

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD**B.Tech. I Year COURSE STRUCTURE & SYLLABUS (R18 Regulations)**

Common for EEE, CSE & IT (Old Branches) and
CSE (Cyber Security), CSE (Data Science), CSE (Networks) & Computer Engineering (Software Engg.) – These Branches are from AY 2020-21.

Computer Science and Design is from AY 2021-22.

I YEAR I SEMESTER

S. No.	Course Code	Course Title	L	T	P	Credits
1	MA101BS	Mathematics - I	3	1	0	4
2	CH102BS	Chemistry	3	1	0	4
3	EE103ES	Basic Electrical Engineering	3	0	0	3
4	ME105ES	Engineering Workshop	1	0	3	2.5
5	EN105HS	English	2	0	0	2
6	CH106BS	Engineering Chemistry Lab	0	0	3	1.5
7	EN107HS	English Language and Communication Skills Lab	0	0	2	1
8	EE108ES	Basic Electrical Engineering Lab	0	0	2	1
		Induction Programme				
		Total Credits	12	2	10	19

I YEAR II SEMESTER

S. No.	Course Code	Course Title	L	T	P	Credits
1	MA201BS	Mathematics - II	3	1	0	4
2	AP202BS	Applied Physics	3	1	0	4
3	CS203ES	Programming for Problem Solving	3	1	0	4
4	ME204ES	Engineering Graphics	1	0	4	3
5	AP205BS	Applied Physics Lab	0	0	3	1.5
6	CS206ES	Programming for Problem Solving Lab	0	0	3	1.5
7	*MC209ES	Environmental Science	3	0	0	0
		Total Credits	13	3	10	18

*MC – Mandatory Course

MA101BS: MATHEMATICS - I**B.Tech. I Year I Sem.**

L	T	P	C
3	1	0	4

Course Objectives: To learn

- Types of matrices and their properties.
- Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- Concept of Eigen values and eigenvectors and to reduce the quadratic form to canonical form.
- Concept of Sequence.
- Concept of nature of the series.
- Geometrical approach to the mean value theorems and their application to the mathematical problems
- Evaluation of surface areas and volumes of revolutions of curves.
- Evaluation of improper integrals using Beta and Gamma functions.
- Partial differentiation, concept of total derivative
- Finding maxima and minima of function of two and three variables.

Course Outcomes: After learning the contents of this paper the student must be able to

- Write the matrix representation of a set of linear equations and to analyse the solution of the system of equations
- Find the Eigen values and Eigen vectors
- Reduce the quadratic form to canonical form using orthogonal transformations.
- Analyse the nature of sequence and series.
- Solve the applications on the mean value theorems.
- Evaluate the improper integrals using Beta and Gamma functions
- Find the extreme values of functions of two variables with/ without constraints.

UNIT-I: Matrices

Matrices: Types of Matrices, Symmetric; Hermitian; Skew-symmetric; Skew-Hermitian; orthogonal matrices; Unitary Matrices; rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordan method; System of linear equations; solving system of Homogeneous and Non-Homogeneous equations. Gauss elimination method; Gauss Seidel Iteration Method.

UNIT-II: Eigen values and Eigen vectors

Linear Transformation and Orthogonal Transformation: Eigen values and Eigenvectors and their properties: Diagonalization of a matrix; Cayley-Hamilton Theorem (without proof); finding inverse and power of a matrix by Cayley-Hamilton Theorem; Quadratic forms and Nature of the Quadratic Forms; Reduction of Quadratic form to canonical forms by Orthogonal Transformation

UNIT-III: Sequences & Series

Sequence: Definition of a Sequence, limit; Convergent, Divergent and Oscillatory sequences.

Series: Convergent, Divergent and Oscillatory Series; Series of positive terms; Comparison test, p-test, D'Alembert's ratio test; Raabe's test; Cauchy's Integral test; Cauchy's root test; logarithmic test.

Alternating series: Leibnitz test; Alternating Convergent series: Absolute and Conditionally Convergence.

UNIT-IV: Calculus

Mean value theorems: Rolle's theorem, Lagrange's Mean value theorem with their Geometrical Interpretation and applications, Cauchy's Mean value Theorem. Taylor's Series.

Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications.

UNIT-V: Multivariable calculus (Partial Differentiation and applications)

Definitions of Limit and continuity.

Partial Differentiation; Euler's Theorem; Total derivative; Jacobian; Functional dependence & independence, Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

TEXT BOOKS:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010
2. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
3. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.

REFERENCES:

1. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
2. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.

CH102BS/CH202BS: CHEMISTRY**B.Tech. I Year I Sem.**

L	T	P	C
3	1	0	4

Course Objectives:

- To bring adaptability to the concepts of chemistry and to acquire the required skills to become a perfect engineer.
- To impart the basic knowledge of atomic, molecular and electronic modifications which makes the student to understand the technology based on them.
- To acquire the knowledge of electrochemistry, corrosion and water treatment which are essential for the Engineers and in industry.
- To acquire the skills pertaining to spectroscopy and to apply them for medical and other fields.
- To impart the knowledge of stereochemistry and synthetic aspects useful for understanding reaction pathways

Course Outcomes: The basic concepts included in this course will help the student to gain:

- The knowledge of atomic, molecular and electronic changes, band theory related to conductivity.
- The required principles and concepts of electrochemistry, corrosion and in understanding the problem of water and its treatments.
- The required skills to get clear concepts on basic spectroscopy and application to medical and other fields.
- The knowledge of configurational and conformational analysis of molecules and reaction mechanisms.

UNIT - I:

Molecular structure and Theories of Bonding: Atomic and Molecular orbitals. Linear Combination of Atomic Orbitals (LCAO), molecular orbitals of diatomic molecules, molecular orbital energy level diagrams of N_2 , O_2 and F_2 molecules. π molecular orbitals of butadiene and benzene.

Crystal Field Theory (CFT): Salient Features of CFT – Crystal Field Splitting of transition metal ion d-orbitals in Tetrahedral, Octahedral and square planar geometries. Band structure of solids and effect of doping on conductance.

UNIT - II:

Water and its treatment: Introduction – hardness of water – Causes of hardness - Types of hardness: temporary and permanent – expression and units of hardness – Estimation of hardness of water by complexometric method. Potable water and its specifications. Steps involved in treatment of water – Disinfection of water by chlorination and ozonization. Boiler feed water and its treatment – Calgon conditioning, Phosphate conditioning and Colloidal conditioning. External treatment of water – Ion exchange process. Desalination of water – Reverse osmosis. Numerical problems.

UNIT - III:

Electrochemistry and corrosion: Electro chemical cells – electrode potential, standard electrode potential, types of electrodes – calomel, Quinhydrone and glass electrode. Nernst equation. Determination of pH of a solution by using quinhydrone and glass electrode. Electrochemical series and its applications. Numerical problems. Potentiometric titrations. Batteries – Primary (Lithium cell) and secondary batteries (Lead – acid storage battery and Lithium ion battery).

Causes and effects of corrosion – theories of chemical and electrochemical corrosion – mechanism of electrochemical corrosion, Types of corrosion: Galvanic, water-line and pitting corrosion. Factors affecting rate of corrosion, Corrosion control methods- Cathodic protection – Sacrificial anode and impressed current cathodic methods. Surface coatings – metallic coatings – methods of application. Electroless plating of Nickel.

UNIT - IV:

Stereochemistry, Reaction Mechanism and synthesis of drug molecules: Introduction to representation of 3-dimensional structures, Structural and stereoisomers, configurations, symmetry and chirality. Enantiomers, diastereomers, optical activity and Absolute configuration. Conformation analysis of n- butane.

Substitution reactions: Nucleophilic substitution reactions: Mechanism of S_N1 , S_N2 reactions. Electrophilic and nucleophilic addition reactions: Addition of HBr to propene. Markownikoff and anti Markownikoff's additions. Grignard additions on carbonyl compounds. Elimination reactions: Dehydro halogenation of alkylhalides. Saytzeff rule. Oxidation reactions: Oxidation of alcohols using $KMnO_4$ and chromic acid.

Reduction reactions: reduction of carbonyl compounds using $LiAlH_4$ & $NaBH_4$. Hydroboration of olefins. Structure, synthesis and pharmaceutical applications of Paracetamol and Aspirin.

UNIT - V:

Spectroscopic techniques and applications: Principles of spectroscopy, selection rules and applications of electronic spectroscopy. vibrational and rotational spectroscopy. Basic concepts of Nuclear magnetic resonance Spectroscopy, chemical shift. Introduction to Magnetic resonance imaging.

TEXT BOOKS:

1. Physical Chemistry, by P.W. Atkins
2. Engineering Chemistry by P.C.Jain & M.Jain; Dhanpat Rai Publishing Company (P) Ltd., New Delhi.
3. Fundamentals of Molecular Spectroscopy, by C.N. Banwell
4. Organic Chemistry: Structure and Function by K.P.C. Volhardt and N.E.Schore, 5th Edition.
5. University Chemistry, by B.M. Mahan, Pearson IV Edition.
6. Engineering Chemistry (NPTEL Web-book), by B.L. Tembe, Kamaluddin and M.S. Krishnan

EE103ES/EE203ES: BASIC ELECTRICAL ENGINEERING**B.Tech. I Year I Sem.**

L	T	P	C
3	0	0	3

Course Objectives:

- To introduce the concepts of electrical circuits and its components
- To understand magnetic circuits, DC circuits and AC single phase & three phase circuits
- To study and understand the different types of DC/AC machines and Transformers.
- To import the knowledge of various electrical installations.
- To introduce the concept of power, power factor and its improvement.

Course Outcomes:

- To analyze and solve electrical circuits using network laws and theorems.
- To understand and analyze basic Electric and Magnetic circuits
- To study the working principles of Electrical Machines
- To introduce components of Low Voltage Electrical Installations

UNIT-I: D.C. Circuits

Electrical circuit elements (R, L and C), voltage and current sources, KVL&KCL, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems.

Time-domain analysis of first-order RL and RC circuits.

UNIT-II: A.C. Circuits

Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance in series R-L-C circuit.

Three-phase balanced circuits, voltage and current relations in star and delta connections.

UNIT-III: Transformers

Ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

UNIT-IV: Electrical Machines

Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Loss components and efficiency, starting and speed control of induction motor. Single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited dc motor.

Construction and working of synchronous generators.

UNIT-V: Electrical Installations

Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

TEXT BOOKS/ REFERENCE BOOKS:

1. Basic Electrical Engineering - D.P. Kothari and I.J. Nagrath, 3rd edition 2010, Tata McGraw Hill.
2. D.C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
3. L.S. Bobrow, Fundamentals of Electrical Engineering", Oxford University Press, 2011
4. Electrical and Electronics Technology, E. Hughes, 10th Edition, Pearson, 2010
5. Electrical Engineering Fundamentals, Vincent Deltoro, Second Edition, Prentice Hall India, 1989.

ME105ES/ME205ES: ENGINEERING WORKSHOP**B.Tech. I Year I Sem.**

L	T	P	C
1	0	3	2.5

Pre-requisites: Practical skill**Course Objectives:**

- To Study of different hand operated power tools, uses and their demonstration.
- To gain a good basic working knowledge required for the production of various engineering products.
- To provide hands on experience about use of different engineering materials, tools, equipments and processes those are common in the engineering field.
- To develop a right attitude, team working, precision and safety at work place.
- It explains the construction, function, use and application of different working tools, equipment and machines.
- To study commonly used carpentry joints.
- To have practical exposure to various welding and joining processes.
- Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances.

Course Outcomes: At the end of the course, the student will be able to:

- Study and practice on machine tools and their operations
- Practice on manufacturing of components using workshop trades including plumbing, fitting, carpentry, foundry, house wiring and welding.
- Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling.
- Apply basic electrical engineering knowledge for house wiring practice.

1. TRADES FOR EXERCISES:**At least two exercises from each trade:**

- I. Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Tenon Joint)
- II. Fitting – (V-Fit, Dovetail Fit & Semi-circular fit)
- III. Tin-Smithy – (Square Tin, Rectangular Tray & Conical Funnel)
- IV. Foundry – (Preparation of Green Sand Mould using Single Piece and Split Pattern)
- V. Welding Practice – (Arc Welding & Gas Welding)
- VI. House-wiring – (Parallel & Series, Two-way Switch and Tube Light)
- VII. Black Smithy – (Round to Square, Fan Hook and S-Hook)

2. TRADES FOR DEMONSTRATION & EXPOSURE:

Plumbing, Machine Shop, Metal Cutting (Water Plasma), Power tools in construction and Wood Working

TEXT BOOKS:

1. Workshop Practice /B. L. Juneja / Cengage
2. Workshop Manual / K. Venugopal / Anuradha.

REFERENCE BOOKS:

1. Work shop Manual - P. Kannaiah/ K. L. Narayana/ SciTech
2. Workshop Manual / Venkat Reddy/ BSP

EN105HS/EN205HS: ENGLISH**B.Tech. I Year I Sem.**

L	T	P	C
2	0	0	2

INTRODUCTION

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training students to acquire language skills, the syllabus of English has been designed to develop linguistic, communicative and critical thinking competencies of Engineering students.

In English classes, the focus should be on the skills development in the areas of vocabulary, grammar, reading and writing. For this, the teachers should use the prescribed text for detailed study. The students should be encouraged to read the texts leading to reading comprehension and different passages may be given for practice in the class. The time should be utilized for working out the exercises given after each excerpt, and also for supplementing the exercises with authentic materials of a similar kind, for example, newspaper articles, advertisements, promotional material etc. *The focus in this syllabus is on skill development, fostering ideas and practice of language skills in various contexts and cultures.*

Learning Objectives: The course will help to

- Improve the language proficiency of students in English with an emphasis on Vocabulary, Grammar, Reading and Writing skills.
- Equip students to study academic subjects more effectively and critically using the theoretical and practical components of English syllabus.
- Develop study skills and communication skills in formal and informal situations.

Course Outcomes: Students should be able to

- Use English Language effectively in spoken and written forms.
- Comprehend the given texts and respond appropriately.
- Communicate confidently in various contexts and different cultures.
- Acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.

SYLLABUS**UNIT –I**

'The Raman Effect' from the prescribed textbook '**English for Engineers**' published by Cambridge University Press.

Vocabulary Building: The Concept of Word Formation --The Use of Prefixes and Suffixes.

Grammar: Identifying Common Errors in Writing with Reference to Articles and Prepositions.

Reading: Reading and Its Importance- Techniques for Effective Reading.

Basic Writing Skills: Sentence Structures -Use of Phrases and Clauses in Sentences- Importance of Proper Punctuation- Techniques for writing precisely – **Paragraph writing** – Types, Structures and Features of a Paragraph - Creating Coherence-Organizing Principles of Paragraphs in Documents.

UNIT –II

'Ancient Architecture in India' from the prescribed textbook '**English for Engineers**' published by Cambridge University Press.

Vocabulary: Synonyms and Antonyms.

Grammar: Identifying Common Errors in Writing with Reference to Noun-pronoun Agreement and Subject-verb Agreement.

Reading: Improving Comprehension Skills – Techniques for Good Comprehension

Writing: Format of a Formal Letter-**Writing Formal Letters** E.g., Letter of Complaint, Letter of Requisition, Job Application with Resume.

UNIT –III

'Blue Jeans' from the prescribed textbook 'English for Engineers' published by Cambridge University Press.

Vocabulary: Acquaintance with Prefixes and Suffixes from Foreign Languages in English to form Derivatives-Words from Foreign Languages and their Use in English.

Grammar: Identifying Common Errors in Writing with Reference to Misplaced Modifiers and Tenses.

Reading: Sub-skills of Reading- Skimming and Scanning

Writing: Nature and Style of Sensible Writing- **Defining- Describing Objects, Places and Events – Classifying-** Providing Examples or Evidence

UNIT –IV

'What Should You Be Eating' from the prescribed textbook 'English for Engineers' published by Cambridge University Press.

Vocabulary: Standard Abbreviations in English

Grammar: Redundancies and Clichés in Oral and Written Communication.

Reading: Comprehension- Intensive Reading and Extensive Reading

Writing: **Writing Practices**--Writing Introduction and Conclusion - Essay Writing-Précis Writing.

UNIT –V

'How a Chinese Billionaire Built Her Fortune' from the prescribed textbook 'English for Engineers' published by Cambridge University Press.

Vocabulary: Technical Vocabulary and their usage

Grammar: Common Errors in English

Reading: Reading Comprehension-Exercises for Practice

Writing: **Technical Reports**- Introduction – Characteristics of a Report – Categories of Reports

Formats- Structure of Reports (Manuscript Format) -Types of Reports - Writing a Report.

TEXTBOOK:

1. Sudarshana, N.P. and Savitha, C. (2018). English for Engineers. Cambridge University Press.

REFERENCE BOOKS:

1. Swan, M. (2016). Practical English Usage. Oxford University Press.
2. Kumar, S and Lata, P. (2018). Communication Skills. Oxford University Press.
3. Wood, F.T. (2007). Remedial English Grammar. Macmillan.
4. Zinsser, William. (2001). On Writing Well. Harper Resource Book.
5. Hamp-Lyons, L. (2006). Study Writing. Cambridge University Press.
6. Exercises in Spoken English. Parts I –III. CIEFL, Hyderabad. Oxford University Press.

CH106BS/CH206ES: ENGINEERING CHEMISTRY LAB**B.Tech. I Year I Sem.**

L	T	P	C
0	0	3	1.5

Course Objectives: The course consists of experiments related to the principles of chemistry required for engineering student. The student will learn:

- Estimation of hardness and chloride content in water to check its suitability for drinking purpose.
- To determine the rate constant of reactions from concentrations as a function of time.
- The measurement of physical properties like adsorption and viscosity.
- To synthesize the drug molecules and check the purity of organic molecules by thin layer chromatographic (TLC) technique.

Course Outcomes: The experiments will make the student gain skills on:

- Determination of parameters like hardness and chloride content in water.
- Estimation of rate constant of a reaction from concentration – time relationships.
- Determination of physical properties like adsorption and viscosity.
- Calculation of R_f values of some organic molecules by TLC technique.

List of Experiments:

1. Determination of total hardness of water by complexometric method using EDTA
2. Determination of chloride content of water by Argentometry
3. Estimation of an HCl by Conductometric titrations
4. Estimation of Acetic acid by Conductometric titrations
5. Estimation of HCl by Potentiometric titrations
6. Estimation of Fe^{2+} by Potentiometry using $KMnO_4$
7. Determination of rate constant of acid catalysed hydrolysis of methyl acetate
8. Synthesis of Aspirin and Paracetamol
9. Thin layer chromatography calculation of R_f values. eg ortho and para nitro phenols
10. Determination of acid value of coconut oil
11. Verification of freundlich adsorption isotherm-adsorption of acetic acid on charcoal
12. Determination of viscosity of castor oil and ground nut oil by using Ostwald's viscometer.
13. Determination of partition coefficient of acetic acid between n-butanol and water.
14. Determination of surface tension of a give liquid using stalagmometer.

REFERENCE BOOKS:

1. Senior practical physical chemistry, B.D. Khosla, A. Gulati and V. Garg (R. Chand & Co., Delhi)
2. An introduction to practical chemistry, K.K. Sharma and D. S. Sharma (Vikas publishing, N. Delhi)
3. Vogel's text book of practical organic chemistry 5th edition
4. Text book on Experiments and calculations in Engineering chemistry – S.S. Dara

EN107HS/EN207HS: ENGLISH LANGUAGE AND COMMUNICATION SKILLS LAB**B.Tech. I Year I Sem.**

L	T	P	C
0	0	2	1

The **Language Lab** focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations both in formal and informal contexts.

Course Objectives:

- To facilitate computer-assisted multi-media instruction enabling individualized and independent language learning
- To sensitize students to the nuances of English speech sounds, word accent, intonation and rhythm
- To bring about a consistent accent and intelligibility in students' pronunciation of English by providing an opportunity for practice in speaking
- To improve the fluency of students in spoken English and neutralize their mother tongue influence
- To train students to use language appropriately for public speaking and interviews

Learning Outcomes: Students will be able to attain

- Better understanding of nuances of English language through audio- visual experience and group activities
- Neutralization of accent for intelligibility
- Speaking skills with clarity and confidence which in turn enhances their employability skills

Syllabus

English Language and Communication Skills Lab (ELCS) shall have two parts:

- a. Computer Assisted Language Learning (CALL) Lab
- b. Interactive Communication Skills (ICS) Lab

Listening Skills**Objectives**

1. To enable students develop their listening skills so that they may appreciate its role in the LSRW skills approach to language and improve their pronunciation
2. To equip students with necessary training in listening so that they can comprehend the speech of people of different backgrounds and regions

Students should be given practice in listening to the sounds of the language, to be able to recognize them and find the distinction between different sounds, to be able to mark stress and recognize and use the right intonation in sentences.

- Listening for general content
- Listening to fill up information
- Intensive listening
- Listening for specific information

Speaking Skills**Objectives**

1. To involve students in speaking activities in various contexts
2. To enable students express themselves fluently and appropriately in social and professional contexts
 - Oral practice: Just A Minute (JAM) Sessions
 - Describing objects/situations/people

- Role play – Individual/Group activities

➤ The following course content is prescribed for the English Language and Communication Skills Lab based on Unit-6 of AICTE Model Curriculum 2018 for B.Tech First English. As the syllabus is very limited, it is required to prepare teaching/learning materials by the teachers collectively in the form of handouts based on the needs of the students in their respective colleges for effective teaching/learning and timesaving in the Lab)

Exercise – I

CALL Lab:

Understand: Listening Skill- Its importance – Purpose- Process- Types- Barriers of Listening.

Practice: Introduction to Phonetics – Speech Sounds – Vowels and Consonants.

ICS Lab:

Understand: Communication at Work Place- Spoken vs. Written language.

Practice: Ice-Breaking Activity and JAM Session- Situational Dialogues – Greetings – Taking Leave – Introducing Oneself and Others.

Exercise – II

CALL Lab:

Understand: Structure of Syllables – Word Stress and Rhythm– Weak Forms and Strong Forms in Context.

Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms in Context.

ICS Lab:

Understand: Features of Good Conversation – Non-verbal Communication.

Practice: Situational Dialogues – Role-Play- Expressions in Various Situations –Making Requests and Seeking Permissions - Telephone Etiquette.

Exercise - III

CALL Lab:

Understand: Intonation-Errors in Pronunciation-the Influence of Mother Tongue (MTI).

Practice: Common Indian Variants in Pronunciation – Differences in British and American Pronunciation.

ICS Lab:

Understand: How to make Formal Presentations.

Practice: Formal Presentations.

Exercise – IV

CALL Lab:

Understand: Listening for General Details.

Practice: Listening Comprehension Tests.

ICS Lab:

Understand: Public Speaking – Exposure to Structured Talks.

Practice: Making a Short Speech – Extempore.

Exercise – V

CALL Lab:

Understand: Listening for Specific Details.

Practice: Listening Comprehension Tests.

ICS Lab:

Understand: Interview Skills.

Practice: Mock Interviews.

Minimum Requirement of infrastructural facilities for ELCS Lab:**1. Computer Assisted Language Learning (CALL) Lab:**

The Computer Assisted Language Learning Lab has to accommodate 40 students with 40 systems, with one Master Console, LAN facility and English language learning software for self- study by students.

System Requirement (Hardware component):

Computer network with LAN facility (minimum 40 systems with multimedia) with the following specifications:

- i) Computers with Suitable Configuration
- ii) High Fidelity Headphones

2. Interactive Communication Skills (ICS) Lab:

The Interactive Communication Skills Lab: A Spacious room with movable chairs and audio-visual aids with a Public-Address System, a LCD and a projector etc.

EE108ES/EE208ES: BASIC ELECTRICAL ENGINEERING LAB**B.Tech. I Year I Sem.**

L	T	P	C
0	0	2	1

Course Objectives:

- To analyze a given network by applying various electrical laws and network theorems
- To know the response of electrical circuits for different excitations
- To calculate, measure and know the relation between basic electrical parameters.
- To analyze the performance characteristics of DC and AC electrical machines

Course Outcomes:

- Get an exposure to basic electrical laws.
- Understand the response of different types of electrical circuits to different excitations.
- Understand the measurement, calculation and relation between the basic electrical parameters
- Understand the basic characteristics of transformers and electrical machines.

List of experiments/demonstrations:

1. Verification of Ohms Law
2. Verification of KVL and KCL
3. Transient Response of Series RL and RC circuits using DC excitation
4. Transient Response of RLC Series circuit using DC excitation
5. Resonance in series RLC circuit
6. Calculations and Verification of Impedance and Current of RL, RC and RLC series circuits
7. Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of a Single-Phase Transformer
8. Load Test on Single Phase Transformer (Calculate Efficiency and Regulation)
9. Three Phase Transformer: Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta, Delta-star, Star-Star)
10. Measurement of Active and Reactive Power in a balanced Three-phase circuit
11. Performance Characteristics of a Separately/Self Excited DC Shunt/Compound Motor
12. Torque-Speed Characteristics of a Separately/Self Excited DC Shunt/Compound Motor
13. Performance Characteristics of a Three-phase Induction Motor
14. Torque-Speed Characteristics of a Three-phase Induction Motor
15. No-Load Characteristics of a Three-phase Alternator