

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD**B.Tech. in COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)
II YEAR COURSE STRUCTURE & SYLLABUS (R18)****Applicable From 2020-21 Admitted Batch****II YEAR I SEMESTER**

S. No.	Course Code	Course Title	L	T	P	Credits
1	CS310PC	Discrete Mathematics	3	0	0	3
2	CS302PC	Data Structures	3	1	0	4
3	MA313BS	Mathematical and Statistical Foundations	3	0	0	3
4	CS304PC	Computer Organization and Architecture	3	0	0	3
5	CS311PC	Python Programming	2	0	0	2
6	SM306MS	Business Economics & Financial Analysis	3	0	0	3
7	CS307PC	Data Structures Lab	0	0	3	1.5
8	CS312PC	Python Programming Lab	0	0	3	1.5
9	*MC309	Gender Sensitization Lab	0	0	2	0
		Total Credits	17	1	8	21

II YEAR II SEMESTER

S. No.	Course Code	Course Title	L	T	P	Credits
1	CS416PC	Formal Language and Automata Theory	3	0	0	3
2	CS417PC	Software Engineering	3	0	0	3
3	CS403PC	Operating Systems	3	0	0	3
4	CS404PC	Database Management Systems	3	1	0	4
5	CS412PC	Object Oriented Programming using Java	3	1	0	4
6	CS406PC	Operating Systems Lab	0	0	3	1.5
7	CS407PC	Database Management Systems Lab	0	0	3	1.5
8	CS408PC	Java Programming Lab	0	0	2	1
9	*MC409	Constitution of India	3	0	0	0
		Total Credits	18	2	8	21

CS310PC: DISCRETE MATHEMATICS**B.Tech. II Year I Sem.**

L	T	P	C
3	0	0	3

Prerequisites: An understanding of Mathematics in general is sufficient.**Course Objectives**

- Introduces the elementary discrete mathematics for computer science and engineering.
- Topics include formal logic notation, methods of proof, induction, sets, relations, graph theory, permutations and combinations, counting principles; recurrence relations and generating functions.

Course Outcomes:

- Ability to understand and construct precise mathematical proofs
- Ability to use logic and set theory to formulate precise statements
- Ability to analyze and solve counting problems on finite and discrete structures
- Ability to describe and manipulate sequences
- Ability to apply graph theory in solving computing problems

UNIT - I

The Foundations: Logic and Proofs: Propositional Logic, Applications of Propositional Logic, Propositional Equivalence, Predicates and Quantifiers, Nested Quantifiers, Rules of Inference, Introduction to Proofs, Proof Methods and Strategy.

UNIT - II

Basic Structures, Sets, Functions, Sequences, Sums, Matrices and Relations Sets, Functions, Sequences & Summations, Cardinality of Sets and Matrices Relations, Relations and Their Properties, n-ary Relations and Their Applications, Representing Relations, Closures of Relations, Equivalence Relations, Partial Orderings.

UNIT - III

Algorithms, Induction and Recursion: Algorithms, The Growth of Functions, Complexity of Algorithms

Induction and Recursion: Mathematical Induction, Strong Induction and Well-Ordering, Recursive Definitions and Structural Induction, Recursive Algorithms, Program Correctness

UNIT - IV

Discrete Probability and Advanced Counting Techniques: An Introduction to Discrete Probability, Probability Theory, Bayes' Theorem, Expected Value and Variance

Advanced Counting Techniques: Recurrence Relations, Solving Linear Recurrence Relations, Divide-and-Conquer Algorithms and Recurrence Relations, Generating Functions, Inclusion-Exclusion, Applications of Inclusion-Exclusion

UNIT - V

Graphs: Graphs and Graph Models, Graph Terminology and Special Types of Graphs, Representing Graphs and Graph Isomorphism, Connectivity, Euler and Hamilton Paths, Shortest-Path Problems, Planar Graphs, Graph Coloring.

Trees: Introduction to Trees, Applications of Trees, Tree Traversal, Spanning Trees, Minimum Spanning Trees

TEXT BOOK:

1. Discrete Mathematics and its Applications with Combinatorics and Graph Theory- Kenneth H Rosen, 7th Edition, TMH.

REFERENCE BOOKS:

1. Discrete Mathematical Structures with Applications to Computer Science-J.P. Tremblay and R. Manohar, TMH,
2. Discrete Mathematics for Computer Scientists & Mathematicians: Joe L. Mott, Abraham Kandel, Theodore P. Baker, 2nd ed, Pearson Education.
3. Discrete Mathematics- Richard Johnsonbaugh, 7thEdn., Pearson Education.
4. Discrete Mathematics with Graph Theory- Edgar G. Goodaire, Michael M. Parmenter.
5. Discrete and Combinatorial Mathematics - an applied introduction: Ralph.P. Grimaldi, 5th edition, Pearson Education.

CS302PC: DATA STRUCTURES**B.Tech. II Year I Sem.**

L	T	P	C
3	1	0	4

Prerequisites: A course on “Programming for Problem Solving”.

Course Objectives:

- Exploring basic data structures such as stacks and queues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
- Introduces sorting and pattern matching algorithms.

Course Outcomes:

- Ability to select the data structures that efficiently model the information in a problem.
- Ability to assess efficiency trade-offs among different data structure implementations or combinations.
- Implement and know the application of algorithms for sorting and pattern matching.
- Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs, and AVL-trees.

UNIT - I

Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks-Operations, array and linked representations of stacks, stack applications, Queues-operations, array and linked representations.

UNIT - II

Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and searching.

Hash Table Representation: hash functions, collision resolution-separate chaining, open addressing-linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

UNIT - III

Search Trees: Binary Search Trees, Definition, Implementation, Operations- Searching, Insertion and Deletion, AVL Trees, Definition, Height of an AVL Tree, Operations – Insertion, Deletion and Searching, Red –Black, Splay Trees.

UNIT - IV

Graphs: Graph Implementation Methods. Graph Traversal Methods.

Sorting: Heap Sort, External Sorting- Model for external sorting, Merge Sort.

UNIT - V

Pattern Matching and Tries: Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:

1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
2. Data Structures using C – A. S. Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson Education.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B.A. Forouzan, Cengage Learning.

MA313BS: MATHEMATICAL AND STATISTICAL FOUNDATIONS**B.Tech. II Year I Sem.**

L	T	P	C
3	0	0	3

Prerequisites: Mathematics courses of first year of study.**Course Objectives:**

- The Number Theory basic concepts useful for cryptography etc
- The theory of Probability, and probability distributions of single and multiple random variables
- The sampling theory and testing of hypothesis and making inferences
- Stochastic process and Markov chains.

Course Outcomes: After learning the contents of this course, the student must be able to

- Apply the number theory concepts to cryptography domain
- Apply the concepts of probability and distributions to some case studies
- Correlate the material of one unit to the material in other units
- Resolve the potential misconceptions and hazards in each topic of study.

UNIT - I

Greatest Common Divisors and Prime Factorization: Greatest common divisors, The Euclidean algorithm, The fundamental theorem of arithmetic, Factorization of integers and the Fermat numbers

Congruences: Introduction to congruences, Linear congruences, The Chinese remainder theorem, Systems of linear congruences

UNIT - II

Simple Linear Regression and Correlation: Introduction to Linear Regression, The Simple Linear Regression Model, Least Squares and the Fitted Model, Properties of the Least Squares Estimators, Inferences Concerning the Regression Coefficients, Prediction, Simple Linear Regression Case Study

Random Variables and Probability Distributions: Concept of a Random Variable, Discrete Probability Distributions, Continuous Probability Distributions, Statistical Independence.

Discrete Probability Distributions: Binomial Distribution, Poisson distribution.

UNIT - III

Continuous Probability Distributions: Normal Distribution, Areas under the Normal Curve, Applications of the Normal Distribution, Normal Approximation to the Binomial

Fundamental Sampling Distributions: Random Sampling, Sampling Distributions, Sampling Distribution of Means and the Central Limit Theorem, Sampling Distribution of S^2 , t-Distribution, F-Distribution.

UNIT - IV

Estimation & Tests of Hypotheses: Introduction, Statistical Inference, Classical Methods of Estimation. Estimating the Mean, Standard Error of a Point Estimate, Prediction Intervals, Tolerance Limits, Estimating the Variance, Estimating a Proportion for single mean , Difference between Two Means, between Two Proportions for Two Samples and Maximum Likelihood Estimation.

UNIT - V

Stochastic Processes and Markov Chains: Introduction to Stochastic processes- Markov process. Transition Probability, Transition Probability Matrix, First order and Higher order Markov process, nstep transition probabilities, Markov chain, Steady state condition, Markov analysis.

TEXT BOOKS:

1. Kenneth H. Rosen, Elementary number theory & its applications, sixth edition, Addison-Wesley, ISBN 978 0-321-50031-1
2. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Statistics for Engineers & Scientists, 9th Ed. Pearson Publishers.
3. S. D. Sharma, Operations Research, Kedarnath and Ramnath Publishers, Meerut, Delhi

REFERENCE BOOK:

1. S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, Khanna publications
2. T.T. Soong, Fundamentals of Probability And Statistics For Engineers, John Wiley & Sons Ltd, 2004.
3. Sheldon M Ross, Probability and statistics for Engineers and scientists, Academic Press.

CS304PC: COMPUTER ORGANIZATION AND ARCHITECTURE**B.Tech. II Year I Sem.**

L	T	P	C
3	0	0	3

Co-requisite: A Course on “Digital Logic Design and Microprocessors”.

Course Objectives:

- The purpose of the course is to introduce principles of computer organization and the basic architectural concepts.
- It begins with basic organization, design, and programming of a simple digital computer and introduces simple register transfer language to specify various computer operations.
- Topics include computer arithmetic, instruction set design, microprogrammed control unit, pipelining and vector processing, memory organization and I/O systems, and multiprocessors

Course Outcomes:

- Understand the basics of instructions sets and their impact on processor design.
- Demonstrate an understanding of the design of the functional units of a digital computer system.
- Evaluate cost performance and design trade-offs in designing and constructing a computer processor including memory.
- Design a pipeline for consistent execution of instructions with minimum hazards.
- Recognize and manipulate representations of numbers stored in digital computers

UNIT - I

Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations: Register Transfer language, Register Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro operations, Arithmetic logic shift unit.

Basic Computer Organization and Design: Instruction codes, Computer Registers Computer instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input – Output and Interrupt.

UNIT - II

Microprogrammed Control: Control memory, Address sequencing, micro program example, design of control unit.

Central Processing Unit: General Register Organization, Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control.

UNIT - III

Data Representation: Data types, Complements, Fixed Point Representation, Floating Point Representation.

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division Algorithms, Floating – point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic operations.

UNIT - IV

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupt Direct memory Access.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache Memory.

UNIT - V

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics.

Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processor.

Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Interprocessor arbitration, Interprocessor communication and synchronization, Cache Coherence.

TEXT BOOK:

1. Computer System Architecture – M. Morris Mano, Third Edition, Pearson/PHI.

REFERENCE BOOKS:

1. Computer Organization – Carl Hamacher, Zvonks Vranesic, Safea Zaky, Vth Edition, McGraw Hill.
2. Computer Organization and Architecture – William Stallings Sixth Edition, Pearson/PHI.
Structured Computer Organization – Andrew S. Tanenbaum, 4th Edition, PHI/Pearson.

CS311PC: PYTHON PROGRAMMING**B.Tech. II Year I Sem.**

L	T	P	C
2	0	0	2

Prerequisites: A course on “Programming for Problem Solving using C”.**Course Objectives:**

- Learn Syntax and Semantics and create Functions in Python.
- Handle Strings and Files in Python.
- Understand Lists, Dictionaries and Regular expressions in Python.
- Implement Object Oriented Programming concepts in Python.
- Build Web Services and introduction to Network and Database Programming in Python.

Course Outcomes:

- Examine Python syntax and semantics and be fluent in the use of Python flow control and functions.
- Demonstrate proficiency in handling Strings and File Systems.
- Create, run and manipulate Python Programs using core data structures like Lists, Dictionaries and use Regular Expressions.
- Interpret the concepts of Object-Oriented Programming as used in Python.
- Implement exemplary applications related to Network Programming, Web Services and Databases in Python.

UNIT - I

Python Basics, Objects- Python Objects, Standard Types, Other Built-in Types, Internal Types, Standard Type Operators, Standard Type Built-in Functions, Categorizing the Standard Types, Unsupported Types

Numbers - Introduction to Numbers, Integers, Floating Point Real Numbers, Complex Numbers, Operators, Built-in Functions, Related Modules

Sequences - Strings, Lists, and Tuples, Mapping and Set Types

UNIT - II

FILES: File Objects, File Built-in Function [open()], File Built-in Methods, File Built-in Attributes, Standard Files, Command-line Arguments, File System, File Execution, Persistent Storage Modules, Related Modules

Exceptions: Exceptions in Python, Detecting and Handling Exceptions, Context Management, *Exceptions as Strings, Raising Exceptions, Assertions, Standard Exceptions, *Creating Exceptions, Why Exceptions (Now)?, Why Exceptions at All?, Exceptions and the sys Module, Related Modules

Modules: Modules and Files, Namespaces, Importing Modules, Importing Module Attributes, Module Built-in Functions, Packages, Other Features of Modules

UNIT - III

Regular Expressions: Introduction, Special Symbols and Characters, Reg and Python

Multithreaded Programming: Introduction, Threads and Processes, Python, Threads, and the Global Interpreter Lock, Thread Module, Threading Module, Related Modules

UNIT - IV

GUI Programming: Introduction, Tkinter and Python Programming, Brief Tour of Other GUIs, Related Modules and Other GUIs

WEB Programming: Introduction, Web Surfing with Python, Creating Simple Web Clients, Advanced Web Clients, CGI-Helping Servers Process Client Data, Building CGI Application

Advanced CGI, Web (HTTP) Servers

UNIT - V

Database Programming: Introduction, Python Database Application Programmer's Interface (DB-API), Object Relational Managers (ORMs), Related Modules

TEXT BOOK:

1. Core Python Programming, Wesley J. Chun, Second Edition, Pearson.

REFERENCE BOOKS:

1. Think Python, Allen Downey, Green Tea Press
2. Introduction to Python, Kenneth A. Lambert, Cengage
3. Python Programming: A Modern Approach, Vamsi Kurama, Pearson
4. Learning Python, Mark Lutz, O'Reilly.

SM306MS: BUSINESS ECONOMICS AND FINANCIAL ANALYSIS**B.Tech. II Year I Sem.**

L	T	P	C
3	0	0	3

Prerequisites: None

Course Objective: To learn the basic Business types, impact of the Economy on Business and Firms specifically. To analyze the Business from the Financial Perspective.

Course Outcome: The students will understand the various Forms of Business and the impact of economic variables on the Business. The Demand, Supply, Production, Cost, Market Structure, Pricing aspects are learnt. The Students can study the firm's financial position by analysing the Financial Statements of a Company.

UNIT – I**Introduction to Business and Economics:**

Business: Structure of Business Firm, Theory of Firm, Types of Business Entities, Limited Liability Companies, Sources of Capital for a Company, Non-Conventional Sources of Finance.

Economics: Significance of Economics, Micro and Macro Economic Concepts, Concepts and Importance of National Income, Inflation, Money Supply in Inflation, Business Cycle, Features and Phases of Business Cycle. Nature and Scope of Business Economics, Role of Business Economist, Multidisciplinary nature of Business Economics.

UNIT - II**Demand and Supply Analysis:**

Elasticity of Demand: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting.

Supply Analysis: Determinants of Supply, Supply Function & Law of Supply.

UNIT - III**Production, Cost, Market Structures & Pricing:**

Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.

Cost analysis: Types of Costs, Short run and Long run Cost Functions.

Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, Monopolistic Competition.

Pricing: Types of Pricing, Product Life Cycle based Pricing, Break Even Analysis, Cost Volume Profit Analysis.

UNIT - IV

Financial Accounting: Accounting concepts and Conventions, Accounting Equation, Double-Entry system of Accounting, Rules for maintaining Books of Accounts, Journal, Posting to Ledger, Preparation of Trial Balance, Elements of Financial Statements, Preparation of Final Accounts.

UNIT - V

Financial Analysis through Ratios: Concept of Ratio Analysis, Liquidity Ratios, Turnover Ratios, Profitability Ratios, Proprietary Ratios, Solvency, Leverage Ratios (simple problems).
Introduction to Fund Flow and Cash Flow Analysis (simple problems).

TEXT BOOKS:

1. D.D. Chaturvedi, S.L. Gupta, Business Economics - Theory and Applications, International Book House Pvt. Ltd. 2013.
2. Dhanesh K Khatri, Financial Accounting, Tata McGraw Hill, 2011.
3. Geethika Ghosh, Piyali Gosh, Purba Roy Choudhury, Managerial Economics, 2e, Tata McGraw Hill Education Pvt. Ltd. 2012.

REFERENCE BOOKS:

1. Paresh Shah, Financial Accounting for Management 2e, Oxford Press, 2015.
2. S.N. Maheshwari, Sunil K Maheshwari, Sharad K Maheshwari, Financial Accounting, 5e, Vikas Publications, 2013.

CS307PC: DATA STRUCTURES LAB**B.Tech. II Year I Sem.**

L	T	P	C
0	0	3	1.5

Prerequisites: A Course on “Programming for problem solving”.**Course Objectives:**

- It covers various concepts of C programming language
- It introduces searching and sorting algorithms
- It provides an understanding of data structures such as stacks and queues.

Course Outcomes:

- Ability to develop C programs for computing and real-life applications using basic elements like control statements, arrays, functions, pointers and strings, and data structures like stacks, queues and linked lists.
- Ability to Implement searching and sorting algorithms

List of Experiments

1. Write a program that uses functions to perform the following operations on singly linked list.:
 - i) Creation
 - ii) Insertion
 - iii) Deletion
 - iv) Traversal
2. Write a program that uses functions to perform the following operations on doubly linked list.:
 - i) Creation
 - ii) Insertion
 - iii) Deletion
 - iv) Traversal
3. Write a program that uses functions to perform the following operations on circular linked list.:
 - i) Creation
 - ii) Insertion
 - iii) Deletion
 - iv) Traversal
4. Write a program that implement stack (its operations) using
 - i) Arrays
 - ii) Pointers
5. Write a program that implement Queue (its operations) using
 - i) Arrays
 - ii) Pointers
6. Write a program that implements the following sorting methods to sort a given list of integers in ascending order
 - i) Bubble sort
 - ii) Selection sort
 - iii) Insertion sort
7. Write a program that use both recursive and non-recursive functions to perform the following searching operations for a Key value in a given list of integers:
 - i) Linear search
 - ii) Binary search
8. Write a program to implement the tree traversal methods.
9. Write a program to implement the graph traversal methods.

TEXT BOOKS:

1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, *Universities Press*.
2. Data Structures using C – A. S. Tanenbaum, Y. Langsam, and M. J. Augenstein, *PHI/Pearson Education*.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B. A. Forouzan, *Cengage Learning*.

CS312PC: PYTHON PROGRAMMING LAB

B.Tech. II Year I Sem.

L T P C
0 0 3 1.5

Prerequisites: A course on “Programming for Problem Solving”.

Course Objectives

- To be able to introduce core programming basics and program design with functions using Python programming language.
- To understand a range of Object-Oriented Programming, as well as in-depth data and information processing techniques.
- To understand the high-performance programs designed to strengthen the practical expertise.

Course Outcome

- Student should be able to understand the basic concepts scripting and the contributions of scripting language
- Ability to explore python especially the object-oriented concepts, and the built in objects of Python.
- Ability to create practical and contemporary applications such as TCP/IP network programming, Web applications, discrete event simulations

List of Experiments:

1. Write a program to demonstrate different number data types in Python.
2. Write a program to perform different Arithmetic Operations on numbers in Python.
3. Write a program to create, concatenate and print a string and accessing sub-string from a given string.
4. Write a python script to print the current date in the following format “Sun May 29 02:26:23 IST 2017”
5. Write a program to create, append, and remove lists in python.
6. Write a program to demonstrate working with tuples in python.
7. Write a program to demonstrate working with dictionaries in python.
8. Write a python program to find largest of three numbers.
9. Write a Python program to convert temperatures to and from Celsius, Fahrenheit. [Formula : $c/5 = f-32/9$]
10. Write a Python program to construct the following pattern, using a nested for loop

*

* *

* * *

* * * *

* * * * *

* * * *

* * *

28

六

11. Write a Python script that prints prime numbers less than 20.
12. Write a python program to find factorial of a number using Recursion.
13. Write a program that accepts the lengths of three sides of a triangle as inputs. The program output should indicate whether or not the triangle is a right triangle (Recall from the Pythagorean Theorem that in a right triangle, the square of one side equals the sum of the squares of the other two sides).

14. Write a python program to define a module to find Fibonacci Numbers and import the module to another program.
15. Write a python program to define a module and import a specific function in that module to another program.
16. Write a script named `copyfile.py`. This script should prompt the user for the names of two text files. The contents of the first file should be input and written to the second file.
17. Write a program that inputs a text file. The program should print all of the unique words in the file in alphabetical order.
18. Write a Python class to convert an integer to a roman numeral.
19. Write a Python class to implement $\text{pow}(x, n)$
20. Write a Python class to reverse a string word by word.

***MC309: GENDER SENSITIZATION LAB**
 (An Activity-based Course)

B.Tech. II Year I Sem.

L	T	P	C
0	0	2	0

COURSE DESCRIPTION

This course offers an introduction to Gender Studies, an interdisciplinary field that asks critical questions about the meanings of sex and gender in society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary. It draws on multiple disciplines – such as literature, history, economics, psychology, sociology, philosophy, political science, anthropology and media studies – to examine cultural assumptions about sex, gender, and sexuality.

This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with race, class, caste, nationality and other social identities. This course also seeks to build an understanding and initiate and strengthen programmes combating gender-based violence and discrimination. The course also features several exercises and reflective activities designed to examine the concepts of gender, gender-based violence, sexuality, and rights. It will further explore the impact of gender-based violence on education, health and development.

Objectives of the Course:

- To develop students' sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Learning Outcomes:

- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students will acquire insight into the gendered division of labour and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.
- Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

UNIT - I: UNDERSTANDING GENDER

Introduction: Definition of Gender-Basic Gender Concepts and Terminology-Exploring Attitudes towards Gender-Construction of Gender-Socialization: Making Women, Making Men

- Preparing for Womanhood. Growing up Male. First lessons in Caste.

UNIT – II: GENDER ROLES AND RELATIONS

Two or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender Roles-Gender Roles and Relationships Matrix-Missing Women-Sex Selection and Its Consequences-Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary

UNIT – III: GENDER AND LABOUR

Division and Valuation of Labour-Housework: The Invisible Labor- "My Mother doesn't Work." "Share the Load."-Work: Its Politics and Economics -Fact and Fiction. Unrecognized and Unaccounted work. -Gender Development Issues-Gender, Governance and Sustainable Development-Gender and Human Rights-Gender and Mainstreaming

UNIT – IV: GENDER - BASED VIOLENCE

The Concept of Violence- Types of Gender-based Violence-Gender-based Violence from a Human Rights Perspective-Sexual Harassment: Say No! -Sexual Harassment, not Eve-teasing- Coping with Everyday Harassment- Further Reading: "Chupulu".

Domestic Violence: Speaking Outls Home a Safe Place? -When Women Unite [Film]. Rebuilding Lives. Thinking about Sexual Violence Blaming the Victim-"I Fought for my Life...."

UNIT – V: GENDER AND CULTURE

Gender and Film-Gender and Electronic Media-Gender and Advertisement-Gender and Popular Literature- Gender Development Issues-Gender Issues-Gender Sensitive Language-Gender and Popular Literature - Just Relationships: Being Together as Equals

Mary Kom and Onler. Love and Acid just do not Mix. Love Letters. Mothers and Fathers. Rosa Parks-The Brave Heart.

Note: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

- *Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments. Apart from the above prescribed book, Teachers can make use of any authentic materials related to the topics given in the syllabus on "Gender".*
- ☞ **ESSENTIAL READING:** The Textbook, "Towards a World of Equals: A Bilingual Textbook on Gender" written by A. Suneetha, Uma Bhrugubanda, Duggirala Vasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu published by Telugu Akademi, Telangana Government in 2015.

ASSESSMENT AND GRADING:

- Discussion & Classroom Participation: 20%
- Project/Assignment: 30%
- End Term Exam: 50%

CS416PC: FORMAL LANGUAGES AND AUTOMATA THEORY**B.Tech. II Year I Sem.**

L	T	P	C
3	0	0	3

Course Objectives:

- To provide introduction to some of the central ideas of theoretical computer science from the perspective of formal languages.
- To introduce the fundamental concepts of formal languages, grammars and automata theory.
- Classify machines by their power to recognize languages.
- Employ finite state machines to solve problems in computing.
- To understand deterministic and non-deterministic machines.
- To understand the differences between decidability and undecidability.

Course Outcomes:

- Able to understand the concept of abstract machines and their power to recognize the languages.
- Able to employ finite state machines for modeling and solving computing problems.
- Able to design context free grammars for formal languages.
- Able to distinguish between decidability and undecidability.
- Able to gain proficiency with mathematical tools and formal methods.

UNIT - I

Introduction to Finite Automata: Structural Representations, Automata and Complexity, the Central Concepts of Automata Theory – Alphabets, Strings, Languages, Problems.

Nondeterministic Finite Automata: Formal Definition, an application, Text Search, Finite Automata with Epsilon-Transitions.

Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The language of DFA, Conversion of NFA with ϵ -transitions to NFA without ϵ -transitions. Conversion of NFA to DFA, Moore and Melay machines

UNIT - II

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite Automata to Regular Expressions.

Pumping Lemma for Regular Languages: Statement of the pumping lemma, Applications of the Pumping Lemma.

Closure Properties of Regular Languages: Closure properties of Regular languages, Decision Properties of Regular Languages, Equivalence and Minimization of Automata.

UNIT - III

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential Forms, Parse Tress, Applications of Context-Free Grammars, Ambiguity in Grammars and Languages.

Push Down Automata: Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of PDA's and CFG's, Acceptance by final state, Acceptance by empty stack, Deterministic Pushdown Automata. From CFG to PDA, From PDA to CFG.

UNIT - IV

Normal Forms for Context- Free Grammars: Eliminating useless symbols, Eliminating ϵ Productions. Chomsky Normal form Griebech Normal form.

Pumping Lemma for Context-Free Languages: Statement of pumping lemma, Applications

Closure Properties of Context-Free Languages: Closure properties of CFL's, Decision Properties of CFL's

Turing Machines: Introduction to Turing Machine, Formal Description, Instantaneous description, The language of a Turing machine

UNIT - V

Types of Turing machine: Turing machines and halting

Undecidability: Undecidability, A Language that is Not Recursively Enumerable, An Undecidable Problem That is RE, Undecidable Problems about Turing Machines, Recursive languages, Properties of recursive languages, Post's Correspondence Problem, Modified Post Correspondence problem, Other Undecidable Problems, Counter machines.

TEXT BOOKS:

1. Introduction to Automata Theory, Languages, and Computation, 3rd Edition, John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education.
2. Theory of Computer Science – Automata languages and computation, Mishra and Chandrashekaran, 2nd edition, PHI.

REFERENCE BOOKS:

1. Introduction to Languages and The Theory of Computation, John C Martin, TMH.
2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.
3. A Text book on Automata Theory, P. K. Srimani, Nasir S. F. B, Cambridge University Press.
4. Introduction to the Theory of Computation, Michael Sipser, 3rd edition, Cengage Learning.
5. Introduction to Formal languages Automata Theory and Computation Kamala Krithivasan, Rama R, Pearson.