

**JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD**  
**B.Tech in CSE (DATA SCIENCE)**  
**III & IV YEAR COURSE STRUCTURE & TENTATIVE SYLLABUS (R18)**

**Applicable From 2020-21 Admitted Batch**

**III YEAR I SEMESTER**

| S. No. | Course Code | Course Title                      | L         | T        | P        | Credits   |
|--------|-------------|-----------------------------------|-----------|----------|----------|-----------|
| 1      |             | Design and Analysis of Algorithms | 3         | 0        | 0        | 3         |
| 2      |             | Introduction to Data Science      | 3         | 0        | 0        | 3         |
| 3      |             | Computer Networks                 | 3         | 0        | 0        | 3         |
| 4      |             | Data Mining                       | 3         | 0        | 0        | 3         |
| 5      |             | Professional Elective - I         | 3         | 0        | 0        | 3         |
| 6      |             | Professional Elective - II        | 3         | 0        | 0        | 3         |
| 7      |             | Data Mining Lab                   | 0         | 0        | 3        | 1.5       |
| 8      |             | Computer Networks Lab             | 0         | 0        | 3        | 1.5       |
| 9      |             | Advanced Communication Skills Lab | 0         | 0        | 2        | 1         |
| 10     |             | Intellectual Property Rights      | 3         | 0        | 0        | 0         |
|        |             | <b>Total Credits</b>              | <b>21</b> | <b>0</b> | <b>8</b> | <b>22</b> |

**III YEAR II SEMESTER**

| S. No. | Course Code | Course Title                    | L         | T        | P        | Credits   |
|--------|-------------|---------------------------------|-----------|----------|----------|-----------|
| 1      |             | Compiler Design                 | 3         | 1        | 0        | 4         |
| 2      |             | Machine Learning                | 3         | 1        | 0        | 4         |
| 3      |             | Big Data Analytics              | 3         | 1        | 0        | 4         |
| 4      |             | Professional Elective – III     | 3         | 0        | 0        | 3         |
| 5      |             | Open Elective - I               | 3         | 0        | 0        | 3         |
| 6      |             | Machine Learning Lab            | 0         | 0        | 3        | 1.5       |
| 7      |             | Big Data Analytics Lab          | 0         | 0        | 3        | 1.5       |
| 8      |             | Professional Elective - III Lab | 0         | 0        | 2        | 1         |
| 9      |             | Environmental Science           | 3         | 0        | 0        | 0         |
|        |             | <b>Total Credits</b>            | <b>18</b> | <b>3</b> | <b>8</b> | <b>22</b> |

**IV YEAR I SEMESTER**

| S. No. | Course Code | Course Title                                        | L         | T        | P         | Credits   |
|--------|-------------|-----------------------------------------------------|-----------|----------|-----------|-----------|
| 1      |             | Predictive Analytics                                | 3         | 0        | 0         | 3         |
| 2      |             | Web and Social Media Analytics                      | 2         | 0        | 0         | 2         |
| 3      |             | Professional Elective – IV                          | 3         | 0        | 0         | 3         |
| 4      |             | Professional Elective – V                           | 3         | 0        | 0         | 3         |
| 5      |             | Open Elective – II                                  | 3         | 0        | 0         | 3         |
| 6      |             | Web and Social Media Analytics Lab                  | 0         | 0        | 2         | 1         |
| 7      |             | Industrial Oriented Mini Project/ Summer Internship | 0         | 0        | 0         | 2*        |
| 8      |             | Seminar                                             | 0         | 0        | 2         | 1         |
| 9      |             | Project Stage – I                                   | 0         | 0        | 6         | 3         |
|        |             | <b>Total Credits</b>                                | <b>14</b> | <b>0</b> | <b>10</b> | <b>21</b> |

**IV YEAR II SEMESTER**

| S. No. | Course Code | Course Title              | L        | T        | P         | Credits   |
|--------|-------------|---------------------------|----------|----------|-----------|-----------|
| 1      |             | Organizational Behaviour  | 3        | 0        | 0         | 3         |
| 2      |             | Professional Elective -VI | 3        | 0        | 0         | 3         |
| 3      |             | Open Elective-III         | 3        | 0        | 0         | 3         |
| 4      |             | Project Stage - II        | 0        | 0        | 14        | 7         |
|        |             | <b>Total Credits</b>      | <b>9</b> | <b>0</b> | <b>14</b> | <b>16</b> |

**\*Note:** Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit report of Industrial Oriented Mini Project/ Summer Internship for evaluation.

MC - Environmental Science – Should be Registered by Lateral Entry Students Only.

MC – Satisfactory/Unsatisfactory

**Professional Elective-I**

|  |                                            |
|--|--------------------------------------------|
|  | Data Warehousing and Business Intelligence |
|  | Artificial Intelligence                    |
|  | Web Programming                            |
|  | Image Processing                           |
|  | Computer Graphics                          |

**Professional Elective - II**

|  |                                  |
|--|----------------------------------|
|  | Spatial and Multimedia Databases |
|  | Information Retrieval Systems    |
|  | Software Project Management      |
|  | DevOps                           |
|  | Computer Vision and Robotics     |

**Professional Elective - III**

|  |                                   |
|--|-----------------------------------|
|  | Software Testing Methodologies    |
|  | Data Visualization Techniques     |
|  | Scripting Languages               |
|  | Mobile Application Development    |
|  | Cryptography and Network Security |

**# Courses in PE – III and PE – III Lab must be in 1-1 correspondence.**

**Professional Elective –IV**

|  |                                |
|--|--------------------------------|
|  | Quantum Computing              |
|  | Database Security              |
|  | Natural Language Processing    |
|  | Information Storage Management |
|  | Internet of Things             |

**Professional Elective - V**

|  |                                   |
|--|-----------------------------------|
|  | Privacy Preserving in Data Mining |
|  | Cloud Computing                   |
|  | Data Science Applications         |
|  | Mining Massive Datasets           |
|  | Exploratory Data Analysis         |

**Professional Elective – VI**

|  |                                    |
|--|------------------------------------|
|  | Data Stream Mining                 |
|  | Web Security                       |
|  | Video Analytics                    |
|  | Blockchain Technology              |
|  | Parallel and Distributed Computing |

## DESIGN AND ANALYSIS OF ALGORITHMS

**B.Tech. III Year I Sem.**

|          |          |          |          |
|----------|----------|----------|----------|
| <b>L</b> | <b>T</b> | <b>P</b> | <b>C</b> |
| <b>3</b> | <b>0</b> | <b>0</b> | <b>3</b> |

**Prerequisites:**

1. A course on “Computer Programming and Data Structures”.
2. A course on “Advanced Data Structures”.

**Course Objectives:**

- Introduces the notations for analysis of the performance of algorithms.
- Introduces the data structure disjoint sets.
- Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic programming, greedy, branch and bound methods) and mention problems for which each technique is appropriate;
- Describes how to evaluate and compare different algorithms using worst-, average-, and best-case analysis.
- Explains the difference between tractable and intractable problems, and introduces the problems that are P, NP and NP complete.

**Course Outcomes:**

- Ability to analyze the performance of algorithms
- Ability to choose appropriate data structures and algorithm design methods for a specified application
- Ability to understand how the choice of data structures and the algorithm design methods impact the performance of programs

**UNIT - I**

**Introduction:** Algorithm, Performance Analysis-Space complexity, Time complexity, Asymptotic Notations- Big oh notation, Omega notation, Theta notation and Little oh notation.

**Divide and conquer:** General method, applications-Binary search, Quick sort, Merge sort, Strassen's matrix multiplication.

**UNIT - II**

**Disjoint Sets:** Disjoint set operations, union and find algorithms

**Backtracking:** General method, applications, n-queen's problem, sum of subsets problem, graph coloring

**UNIT - III**

**Dynamic Programming:** General method, applications- Optimal binary search trees, 0/1 knapsack problem, All pairs shortest path problem, Traveling sales person problem, Reliability design.

**UNIT - IV**

**Greedy method:** General method, applications-Job sequencing with deadlines, knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

**UNIT - V**

**Branch and Bound:** General method, applications - Travelling sales person problem, 0/1 knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution.

**NP-Hard and NP-Complete problems:** Basic concepts, non-deterministic algorithms, NP - Hard and NP-Complete classes, Cook's theorem.

**TEXT BOOK:**

1. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekharan, University Press.

**REFERENCE BOOKS:**

1. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education.
2. Introduction to Algorithms, second edition, T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, PHI Pvt. Ltd./ Pearson Education.
3. Algorithm Design: Foundations, Analysis and Internet Examples, M.T. Goodrich and R. Tamassia, John Wiley and sons.

## INTRODUCTION TO DATA SCIENCE

**B.Tech. III Year I Sem.**

|          |          |          |          |
|----------|----------|----------|----------|
| <b>L</b> | <b>T</b> | <b>P</b> | <b>C</b> |
| <b>3</b> | <b>0</b> | <b>0</b> | <b>3</b> |

**Course Objectives:**

1. Learn concepts, techniques and tools they need to deal with various facets of data science practice, including data collection and integration
2. Understand the basic types of data and basic statistics
3. Identify the importance of data reduction and data visualization techniques

**Course Outcomes:** After completion of the course, the student should be able to

1. Understand basic terms what Statistical Inference means.
2. Identify probability distributions commonly used as foundations for statistical modelling. Fit a model to data
3. describe the data using various statistical measures
4. utilize R elements for data handling
5. perform data reduction and apply visualization techniques.

### **UNIT - I**

**Introduction:** Definition of Data Science- Big Data and Data Science hype – and getting past the hype - Datafication - Current landscape of perspectives - Statistical Inference - Populations and samples - Statistical modeling, probability distributions, fitting a model – Over fitting. **Basics of R:** Introduction, R-Environment Setup, Programming with R, Basic Data Types.

### **UNIT - II**

**Data Types & Statistical Description**

**Types of Data:** Attributes and Measurement, What is an Attribute? The Type of an Attribute, The Different Types of Attributes, Describing Attributes by the Number of Values, Asymmetric Attributes, Binary Attribute, Nominal Attributes, Ordinal Attributes, Numeric Attributes, Discrete versus Continuous Attributes. Basic Statistical Descriptions of Data: Measuring the Central Tendency: Mean, Median, and Mode, Measuring the Dispersion of Data: Range, Quartiles, Variance, Standard Deviation, and Interquartile Range, Graphic Displays of Basic Statistical Descriptions of Data.

### **UNIT - III**

**Vectors:** Creating and Naming Vectors, Vector Arithmetic, Vector sub setting, **Matrices:** Creating and Naming Matrices, Matrix Sub setting, Arrays, Class. **Factors and Data Frames:** Introduction to Factors: Factor Levels, Summarizing a Factor, Ordered Factors, Comparing Ordered Factors, Introduction to Data Frame, subsetting of Data Frames, Extending Data Frames, Sorting Data Frames.

**Lists:** Introduction, creating a List: Creating a Named List, Accessing List Elements, Manipulating List Elements, Merging Lists, Converting Lists to Vectors

### **UNIT - IV**

**Conditionals and Control Flow:** Relational Operators, Relational Operators and Vectors, Logical Operators, Logical Operators and Vectors, Conditional Statements. **Iterative Programming in R:** Introduction, While Loop, For Loop, Looping Over List. **Functions in R:** Introduction, writing a Function in R, Nested Functions, Function Scoping, Recursion, Loading an R Package, Mathematical Functions in R.

### **UNIT - V**

**Data Reduction:** Overview of Data Reduction Strategies, Wavelet Transforms, Principal Components Analysis, Attribute Subset Selection, Regression and Log-Linear Models: Parametric Data Reduction, Histograms, Clustering, Sampling, Data Cube Aggregation. **Data Visualization:** Pixel-Oriented

Visualization Techniques, Geometric Projection Visualization Techniques, Icon-Based Visualization Techniques, Hierarchical Visualization Techniques, Visualizing Complex Data and Relations.

**TEXT BOOKS:**

1. Doing Data Science, Straight Talk from The Frontline. Cathy O'Neil and Rachel Schutt, O'Reilly, 2014
2. Jiawei Han, Micheline Kamber and Jian Pei. Data Mining: Concepts and Techniques, 3rd ed. The Morgan Kaufmann Series in Data Management Systems.
3. K G Srinivas, G M Siddesh, "Statistical programming in R", Oxford Publications.

**REFERENCE BOOKS:**

1. Introduction to Data Mining, Pang-Ning Tan, Vipin Kumar, Michael Steinbach, Pearson Education.
2. Brian S. Everitt, "A Handbook of Statistical Analysis Using R", Second Edition, CRC Press, 2014.
3. Dalgaard, Peter, "Introductory statistics with R", Springer Science & Business Media, 2008.
4. Paul Teator, "R Cookbook", O'Reilly, 2011.

## COMPUTER NETWORKS

**B.Tech. III Year I Sem.**

|          |          |          |          |
|----------|----------|----------|----------|
| <b>L</b> | <b>T</b> | <b>P</b> | <b>C</b> |
| <b>3</b> | <b>0</b> | <b>0</b> | <b>3</b> |

**Prerequisites:**

- A course on “Programming for problem solving”.
- A course on “Data Structures”.

**Course Objectives:**

1. The objective of the course is to equip the students with a general overview of the concepts and fundamentals of computer networks.
2. Familiarize the students with the standard models for the layered approach to communication between machines in a network and the protocols of the various layers.

**Course Outcomes:**

1. Gain the knowledge of the basic computer network technology.
2. Gain the knowledge of the functions of each layer in the OSI and TCP/IP reference model.
3. Obtain the skills of subnetting and routing mechanisms.
4. Familiarity with the essential protocols of computer networks, and how they can be applied in network design and implementation.

**UNIT - I**

Network hardware, Network software, OSI, TCP/IP Reference models, Example Networks: ARPANET, Internet. Physical Layer: Guided Transmission media: twisted pairs, coaxial cable, fiber optics, Wireless transmission.

**UNIT - II**

Data link layer: Design issues, framing, Error detection and correction. Elementary data link protocols: simplex protocol, A simplex stop and wait protocol for an error-free channel, A simplex stop and wait protocol for noisy channel. Sliding Window protocols: A one-bit sliding window protocol, A protocol using Go-Back-N, A protocol using Selective Repeat, Example data link protocols. Medium Access sub layer: The channel allocation problem, Multiple access protocols: ALOHA, Carrier sense multiple access protocols, collision free protocols. Wireless LANs, Data link layer switching.

**UNIT - III**

Network Layer: Design issues, Routing algorithms: shortest path routing, Flooding, Hierarchical routing, Broadcast, Multicast, distance vector routing, Congestion Control Algorithms, Quality of Service, Internetworking, The Network layer in the internet.

**UNIT - IV**

Transport Layer: Transport Services, Elements of Transport protocols, Connection management, TCP and UDP protocols.

**UNIT - V**

Application Layer –Domain name system, SNMP, Electronic Mail; the World WEB, HTTP, Streaming audio and video.

**TEXT BOOK:**

1. Computer Networks -- Andrew S Tanenbaum, David. j. Wetherall, 5th Edition. Pearson Education/PHI

**REFERENCE BOOKS:**

1. An Engineering Approach to Computer Networks-S. Keshav, 2nd Edition, Pearson Education
2. Data Communications and Networking – Behrouz A. Forouzan. Third Edition TMH.

**DATA MINING****B.Tech. III Year I Sem.**

|          |          |          |          |
|----------|----------|----------|----------|
| <b>L</b> | <b>T</b> | <b>P</b> | <b>C</b> |
| <b>3</b> | <b>0</b> | <b>0</b> | <b>3</b> |

**Pre-Requisites:**

- A course on “Database Management Systems”
- Knowledge of probability and statistics

**Course Objectives:**

- It presents methods for mining frequent patterns, associations, and correlations.
- It then describes methods for data classification and prediction, and data-clustering approaches.
- It covers mining various types of data stores such as spatial, textual, multimedia, streams.

**Course Outcomes:**

- Ability to understand the types of the data to be mined and present a general classification of tasks and primitives to integrate a data mining system.
- Apply preprocessing methods for any given raw data.
- Extract interesting patterns from large amounts of data.
- Discover the role played by data mining in various fields.
- Choose and employ suitable data mining algorithms to build analytical applications
- Evaluate the accuracy of supervised and unsupervised models and algorithms.

**UNIT - I**

**Data Mining:** Data–Types of Data–, Data Mining Functionalities– Interestingness Patterns– Classification of Data Mining systems– Data mining Task primitives –Integration of Data mining system with a Data warehouse–Major issues in Data Mining–Data Preprocessing.

**UNIT - II**

**Association Rule Mining:** Mining Frequent Patterns–Associations and correlations – Mining Methods– Mining Various kinds of Association Rules– Correlation Analysis– Constraint based Association mining. Graph Pattern Mining, SPM.

**UNIT - III**

**Classification:** Classification and Prediction – Basic concepts–Decision tree induction–Bayesian classification, Rule–based classification, Lazy learner.

**UNIT - IV**

**Clustering and Applications:** Cluster analysis–Types of Data in Cluster Analysis–Categorization of Major Clustering Methods– Partitioning Methods, Hierarchical Methods– Density–Based Methods, Grid–Based Methods, Outlier Analysis.

**UNIT - V**

**Advanced Concepts:** Basic concepts in Mining data streams–Mining Time–series data—Mining sequence patterns in Transactional databases– Mining Object– Spatial– Multimedia–Text and Web data – Spatial Data mining– Multimedia Data mining–Text Mining– Mining the World Wide Web.

**TEXT BOOKS:**

1. Data Mining – Concepts and Techniques – Jiawei Han & Micheline Kamber, 3<sup>rd</sup> Edition Elsevier.
2. Data Mining Introductory and Advanced topics – Margaret H Dunham, PEA.

**REFERENCE BOOK:**

1. Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques (Second Edition), Morgan Kaufmann, 2005.

**DATA WAREHOUSING AND BUSINESS INTELLIGENCE (Professional Elective – I)****B.Tech. III Year I Sem.**

|          |          |          |          |
|----------|----------|----------|----------|
| <b>L</b> | <b>T</b> | <b>P</b> | <b>C</b> |
| <b>3</b> | <b>0</b> | <b>0</b> | <b>3</b> |

**Course Objectives:**

1. This course is concerned with extracting data from the information systems that deal with the day-to-day operations and transforming it into data that can be used by businesses to drive high-level decision making
2. Students will learn how to design and create a data warehouse, and how to utilize the process of extracting, transforming, and loading (ETL) data into data warehouses.

**Course Outcomes:**

1. Understand architecture of data warehouse and OLAP operations.
2. Understand Fundamental concepts of BI and Analytics
3. Application of BI Key Performance indicators
4. Design of Dashboards, Implementation of Web Analytics
5. Understand Utilization of Advanced BI Tools and their Implementation.
6. Implementation of BI Techniques and BI Ethics.

**UNIT - I**

**DATA WAREHOUSE:** Data Warehouse-Data Warehouse Architecture- Multidimensional Data Model- Data cube and OLAP Technology-Data Warehouse Implementation -DBMS schemas for Decision support - Efficient methods for Data cube computation.

**UNIT - II**

**Business Intelligence:** Introduction – Definition, Leveraging Data and Knowledge for BI, BI Components, BI Dimensions, Information Hierarchy, Business Intelligence and Business Analytics. BI Life Cycle. Data for BI - Data Issues and Data Quality for BI.

**UNIT - III**

**BI Implementation** - Key Drivers, Key Performance Indicators and Performance Metrics, BI Architecture/Framework, Best Practices, Business Decision Making, Styles of BI-vent-Driven alerts - A cyclic process of Intelligence Creation. The value of Business Intelligence-Value driven & Information use.

**UNIT - IV**

**Advanced BI** – Big Data and BI, Social Networks, Mobile BI, emerging trends, Description of different BI-Tools (Pentaho, KNIME)

**UNIT - V**

Business intelligence implementation-Business Intelligence and integration implementation-connecting in BI systems- Issues of legality- Privacy and ethics- Social networking and BI.

**TEXT BOOKS:**

1. Data Mining – Concepts and Techniques - JIAWEI HAN & MICHELINE KAMBER, Elsevier.
2. Rajiv Sabherwal “Business Intelligence” Wiley Publications, 2012.

**REFERENCE BOOKS:**

1. Efraim Turban, Ramesh Sharda, Jay Aronson, David King, Decision Support and Business Intelligence Systems, 9th Edition, Pearson Education, 2009.
2. David Loshin, Business Intelligence - The Savvy Manager's Guide Getting Onboard with Emerging IT, Morgan Kaufmann Publishers, 2009.
3. Philo Janus, Stacia Misner, Building Integrated Business Intelligence Solutions with SQL Server, 2008 R2 & Office 2010, TMH, 2011.
4. Business Intelligence Data Mining and Optimization for decision making [Author: Carlo-Verellis] [Publication: (Wiley)].
5. Data Warehousing, Data Mining & OLAP- Alex Berson and Stephen J. Smith- Tata McGraw-Hill Edition, Tenth reprint 2007.
6. Building the Data Warehouse- W. H. Inmon, Wiley Dreamtech India Pvt. Ltd.
7. Data Mining Introductory and Advanced topics –MARGARET H DUNHAM, PEA.

**ARTIFICIAL INTELLIGENCE (Professional Elective – I)****B.Tech. III Year I Sem.**

|          |          |          |          |
|----------|----------|----------|----------|
| <b>L</b> | <b>T</b> | <b>P</b> | <b>C</b> |
| <b>3</b> | <b>0</b> | <b>0</b> | <b>3</b> |

**Prerequisites:**

1. A course on “Computer Programming and Data Structures”
2. A course on “Advanced Data Structures”
3. A course on “Design and Analysis of Algorithms”
4. A course on “Mathematical Foundations of Computer Science”
5. Some background in linear algebra, data structures and algorithms, and probability will all be helpful

**Course Objectives:**

- To learn the distinction between optimal reasoning Vs. human like reasoning
- To understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.
- To learn different knowledge representation techniques.
- To understand the applications of AI, namely game playing, theorem proving, and machine learning.

**Course Outcomes:**

- Ability to formulate an efficient problem space for a problem expressed in natural language.
- Select a search algorithm for a problem and estimate its time and space complexities.
- Possess the skill for representing knowledge using the appropriate technique for a given problem.
- Possess the ability to apply AI techniques to solve problems of game playing, and machine learning.

**UNIT - I****Problem Solving by Search-I:** Introduction to AI, Intelligent Agents

**Problem Solving by Search –II:** Problem-Solving Agents, Searching for Solutions, Uninformed Search Strategies: Breadth-first search, Uniform cost search, Depth-first search, Iterative deepening Depth-first search, Bidirectional search, Informed (Heuristic) Search Strategies: Greedy best-first search, A\* search, Heuristic Functions, Beyond Classical Search: Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching with Partial Observations, Online Search Agents and Unknown Environment .

**UNIT - II****Problem Solving by Search-II and Propositional Logic**

**Adversarial Search:** Games, Optimal Decisions in Games, Alpha–Beta Pruning, Imperfect Real-Time Decisions.

**Constraint Satisfaction Problems:** Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Local Search for CSPs, The Structure of Problems.

**Propositional Logic:** Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses, Forward and backward chaining, Effective Propositional Model Checking, Agents Based on Propositional Logic.

**UNIT - III****Logic and Knowledge Representation**

**First-Order Logic:** Representation, Syntax and Semantics of First-Order Logic, Using First-Order Logic, Knowledge Engineering in First-Order Logic.

**Inference in First-Order Logic:** Propositional vs. First-Order Inference, Unification and Lifting, Forward Chaining, Backward Chaining, Resolution.

**Knowledge Representation:** Ontological Engineering, Categories and Objects, Events, Mental Events and Mental Objects, Reasoning Systems for Categories, Reasoning with Default Information.

## UNIT - IV

### Planning

**Classical Planning:** Definition of Classical Planning, Algorithms for Planning with State-Space Search, Planning Graphs, other Classical Planning Approaches, Analysis of Planning approaches.

**Planning and Acting in the Real World:** Time, Schedules, and Resources, Hierarchical Planning, Planning and Acting in Nondeterministic Domains, Multi agent Planning.

## UNIT - V

### Uncertain knowledge and Learning

**Uncertainty:** Acting under Uncertainty, Basic Probability Notation, Inference Using Full Joint Distributions, Independence, Bayes' Rule and Its Use,

**Probabilistic Reasoning:** Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Approximate Inference in Bayesian Networks, Relational and First-Order Probability, Other Approaches to Uncertain Reasoning; Dempster-Shafer theory.

**Learning:** Forms of Learning, Supervised Learning, Learning Decision Trees. Knowledge in Learning: Logical Formulation of Learning, Knowledge in Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming.

### TEXT BOOK:

1. Artificial Intelligence A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education.

### REFERENCE BOOKS:

1. Artificial Intelligence, 3<sup>rd</sup> Edn, E. Rich and K. Knight (TMH)
2. Artificial Intelligence, 3<sup>rd</sup> Edn., Patrick Henry Winston, Pearson Education.
3. Artificial Intelligence, Shivani Goel, Pearson Education.
4. Artificial Intelligence and Expert systems – Patterson, Pearson Education.

**WEB PROGRAMMING (Professional Elective – I)****B.Tech. III Year I Sem.**

|          |          |          |          |
|----------|----------|----------|----------|
| <b>L</b> | <b>T</b> | <b>P</b> | <b>C</b> |
| <b>3</b> | <b>0</b> | <b>0</b> | <b>3</b> |

**Course Objectives:** The student should be able to:

- Understand the technologies used in Web Programming.
- Know the importance of object-oriented aspects of Scripting.
- Understand creating database connectivity using JDBC.
- Learn the concepts of web-based application using sockets.

**Course Outcomes:** Upon Completion of the course, the students will be able to

- Design web pages.
- Use technologies of Web Programming.
- Apply object-oriented aspects to Scripting.
- Create databases with connectivity using JDBC.
- Build web-based application using sockets.

**UNIT - I**

**SCRIPTING:** Web page Designing using HTML, Scripting basics- Client side and server-side scripting. Java Script-Object, names, literals, operators and expressions- statements and features- events - windows -documents - frames - data types - built-in functions- Browser object model - Verifying forms - HTML5-CSS3- HTML 5 canvas - Web site creation using tools.

**UNIT – II**

**JAVA:** Introduction to object-oriented programming-Features of Java – Data types, variables and arrays – Operators – Control statements – Classes and Methods – Inheritance. Packages and Interfaces – Exception Handling – Multithreaded Programming – Input/ Output – Files – Utility Classes – String Handling.

**UNIT – III**

**JDBC:** JDBC Overview – JDBC implementation – Connection class – Statements - Catching Database Results, handling database Queries. Networking– Inet Address class – URL class- TCP sockets – UDP sockets, Java Beans –RMI.

**UNIT – IV**

**APPLETS:** Java applets- Life cycle of an applet – Adding images to an applet – Adding sound to an applet. Passing parameters to an applet. Event Handling. Introducing AWT: Working with Windows Graphics and Text. Using AWT Controls, Layout Managers and Menus. Servlet – life cycle of a servlet. The Servlet API, Handling HTTP Request and Response, using Cookies, Session Tracking. Introduction to JSP.

**UNIT – V**

**XML AND WEB SERVICES:** Xml – Introduction-Form Navigation-XML Documents- XSL – XSLT- Web services-UDDI-WSDL-Java web services – Web resources.

**TEXT BOOKS:**

1. Harvey Deitel, Abbey Deitel, Internet and World Wide Web: How To Program 5th Edition.
2. Herbert Schildt, Java - The Complete Reference, 7th Edition. Tata McGraw- Hill Edition.
3. Michael Morrison XML Unleashed Tech media SAMS.

**REFERENCE BOOKS:**

1. John Pollock, Java script - A Beginners Guide, 3rd Edition -- Tata McGraw-Hill Edition.
2. Keyur Shah, Gateway to Java Programmer Sun Certification, Tata McGraw Hill, 2002.

**IMAGE PROCESSING (Professional Elective – I)****B.Tech. III Year I Sem.****L T P C**  
**3 0 0 3****Pre-requisites:**

1. Students are expected to have knowledge in linear signals and systems, Fourier Transform, basic linear algebra, basic probability theory and basic programming techniques; knowledge of Digital Signal Processing is desirable.
2. A course on "Computational Mathematics"
3. A course on "Computer Oriented Statistical Methods"

**Course Objectives:**

1. Provide a theoretical and mathematical foundation of fundamental Digital Image Processing concepts.
2. The topics include image acquisition; sampling and quantization; preprocessing; enhancement; restoration; segmentation; and compression.

**Course Outcomes:**

1. Demonstrate the knowledge of the basic concepts of two-dimensional signal acquisition, sampling, and quantization.
2. Demonstrate the knowledge of filtering techniques.
3. Demonstrate the knowledge of 2D transformation techniques.
4. Demonstrate the knowledge of image enhancement, segmentation, restoration and compression techniques.

**UNIT - I**

**Digital Image Fundamentals:** Digital Image through Scanner, Digital Camera. Concept of Gray Levels. Gray Level to Binary Image Conversion. Sampling and Quantization. Relationship between Pixels. Imaging Geometry. 2D Transformations-DFT, DCT, KLT and SVD.

**UNIT - II**

Image Enhancement in Spatial Domain Point Processing, Histogram Processing, Spatial Filtering, Enhancement in Frequency Domain, Image Smoothing, Image Sharpening.

**UNIT - III**

Image Restoration Degradation Model, Algebraic Approach to Restoration, Inverse Filtering, Least Mean Square Filters, Constrained Least Squares Restoration, Interactive Restoration.

**UNIT - IV**

Image Segmentation Detection of Discontinuities, Edge Linking and Boundary Detection, Thresholding, Region Oriented Segmentation.

**UNIT - V**

Image Compression Redundancies and their Removal Methods, Fidelity Criteria, Image Compression Models, Source Encoder and Decoder, Error Free Compression, Lossy Compression.

**TEXT BOOK:**

1. Digital Image Processing: R.C. Gonzalez & R. E. Woods, Addison Wesley/ Pearson Education, 2<sup>nd</sup> Ed, 2004.

**REFERENCE BOOKS:**

1. Fundamentals of Digital Image Processing: A. K. Jain, PHI.
2. Digital Image Processing using MAT LAB: Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins: Pearson Education India, 2004.
3. Digital Image Processing: William K. Pratt, John Wiley, 3<sup>rd</sup> Edition, 2004.

**COMPUTER GRAPHICS (Professional Elective – I)****B.Tech. III Year I Sem.**

|          |          |          |          |
|----------|----------|----------|----------|
| <b>L</b> | <b>T</b> | <b>P</b> | <b>C</b> |
| <b>3</b> | <b>0</b> | <b>0</b> | <b>3</b> |

**Prerequisites:**

1. Familiarity with the theory and use of coordinate geometry and of linear algebra such as matrix multiplication.
2. A course on “Computer Programming and Data Structures”

**Course Objectives:**

- The aim of this course is to provide an introduction of fundamental concepts and theory of computer graphics.
- Topics covered include graphics systems and input devices; geometric representations and 2D/3D transformations; viewing and projections; illumination and color models; animation; rendering and implementation; visible surface detection;

**Course Outcomes:**

- Acquire familiarity with the relevant mathematics of computer graphics.
- Be able to design basic graphics application programs, including animation
- Be able to design applications that display graphic images to given specifications

**UNIT - I**

**Introduction:** Application areas of Computer Graphics, overview of graphics systems, video-display devices, raster-scan systems, random scan systems, graphics monitors and work stations and input devices. **Output primitives:** Points and lines, line drawing algorithms (Bresenham's and DDA Algorithm), mid-point circle and ellipse algorithms. **Polygon Filling:** Scan-line algorithm, boundary-fill and flood-fill algorithms

**UNIT - II**

**2-D geometrical transforms:** Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformations between coordinate systems. **2-D viewing:** The viewing pipeline, viewing coordinate reference frame, window to view-port coordinate transformation, viewing functions, Cohen-Sutherland algorithms, Sutherland – Hodgeman polygon clipping algorithm.

**UNIT - III**

**3-D object representation:** Polygon surfaces, quadric surfaces, spline representation, Hermite curve, Bezier curve and B-Spline curves, Bezier and B-Spline surfaces. Basic illumination models, polygon rendering methods.

**UNIT - IV**

**3-D Geometric transformations:** Translation, rotation, scaling, reflection and shear transformations, composite transformations. **3-D viewing:** Viewing pipeline, viewing coordinates, view volume and general projection transforms and clipping.

**UNIT - V**

**Computer animation:** Design of animation sequence, general computer animation functions, raster animation, computer animation languages, key frame systems, motion specifications.

**Visible surface detection methods:** Classification, back-face detection, depth-buffer, BSP-tree methods and area sub-division methods.

**TEXT BOOKS:**

1. “Computer Graphics C version”, Donald Hearn and M. Pauline Baker, Pearson Education
2. “Computer Graphics Principles & practice”, second edition in C, Foley, Van Dam, Feiner and Hughes, Pearson Education.
3. Computer Graphics, Steven Harrington, TMH

**REFERENCE BOOKS:**

1. Procedural elements for Computer Graphics, David F Rogers, Tata Mc Graw hill, 2<sup>nd</sup> edition.
2. Principles of Interactive Computer Graphics”, Neuman and Sproul, TMH.
3. Principles of Computer Graphics, Shalini Govil, Pai, 2005, Springer.

**SPATIAL AND MULTIMEDIA DATABASES (Professional Elective – II)****B.Tech. III Year I Sem.**

|          |          |          |          |
|----------|----------|----------|----------|
| <b>L</b> | <b>T</b> | <b>P</b> | <b>C</b> |
| <b>3</b> | <b>0</b> | <b>0</b> | <b>3</b> |

**Course Objective:** Introduce the basic concepts, data models and indexing structures for spatial data, multimedia data.

**Course Outcomes:**

1. Understand data models, storage, indexing and design of spatial databases.
2. Represent image database with R-tree.
3. Store and retrieve multimedia data.

**UNIT - I**

Introduction to Spatial Databases: Overview, beneficiaries, GIA and SDBMS, users, Space taxonomy, query language, query processing, query optimization. Spatial Concepts and Data Models: Models of Spatial information, three step database design, Extending the ER model with spatial concept, object-oriented data modeling. Spatial Query Languages.

**UNIT - II**

Spatial Storage and Indexing: Storage-disks and files, spatial indexing, TR\*, spatial join index. Query processing and optimization – Evaluation of Spatial operations, query optimization, Analysis of Spatial index structures, distributed and parallel spatial database system. Multidimensional Data Structures: k-d Trees, Point Quadtrees, The MX-Quadtree, R-Trees, comparison of Different Data Structures.

**UNIT - III**

Image Databases: Raw Images, Compressed Image Representations, Image Processing: Segmentation, Similarity-Based Retrieval, Alternative Image DB Paradigms, Representing Image DBs with Relations, Representing Image DBs with R-Trees, Retrieving Images By Spatial Layout, Implementations. Text/Document Databases: Precision and Recall, Stop Lists, Word Stems, and Frequency Tables, Latent Semantic Indexing, TV-Trees, Other Retrieval Techniques.

**UNIT - IV**

Video Databases : Organizing Content of a Single Video, Querying Content of Video Libraries, Video Segmentation, video Standards Audio Databases : A General Model of Audio Data, Capturing Audio Content through Discrete Transformation, Indexing Audio Data Multimedia Databases : Design and Architecture of a Multimedia Database, Organizing Multimedia Data Based on The Principle of Uniformity, Media Abstractions, Query Languages for Retrieving Multimedia Data, Indexing SMDSSs with Enhanced Inverted Indices, Query Relaxation/Expansion.

**UNIT - V**

Creating Distributed Multimedia Presentations: Objects in Multimedia Presentations, Specifying Multimedia Documents with Temporal Constraints, Efficient Solution of Temporal Presentation Constraints, Spatial Constraints. Distributed Media Servers: Distributed multimedia server architecture, distributed retrieval plans, optimal distributed retrieval plans.

**TEXT BOOKS:**

1. Shashi Shekhar, Sanjiv Chawla, Spatial Databases-A Tour, Pearson Education.
2. V.S. Subrahmanian, Principles of Multimedia Database Systems, Morgan Kauffman.

**REFERENCE BOOK:**

1. Multimedia Databases: An object relational approach, Lynne Dunckley, Pearson Education.
2. Multimedia Database Systems, Prabhakaran, Springer.

**INFORMATION RETRIEVAL SYSTEMS (Professional Elective – II)****B.Tech. III Year I Sem.**

|          |          |          |          |
|----------|----------|----------|----------|
| <b>L</b> | <b>T</b> | <b>P</b> | <b>C</b> |
| <b>3</b> | <b>0</b> | <b>0</b> | <b>3</b> |

**Prerequisites:** Data Structures.**Course Objectives:**

1. To learn the important concepts and algorithms in IRS
2. To understand the data/file structures that are necessary to design, and implement information retrieval (IR) systems.

**Course Outcomes:**

1. Ability to apply IR principles to locate relevant information large collections of data
2. Ability to design different document clustering algorithms
3. Implement retrieval systems for web search tasks.
4. Design an Information Retrieval System for web search tasks.

**UNIT - I**

Introduction to Information Retrieval Systems: Definition of Information Retrieval System, Objectives of Information Retrieval Systems, Functional Overview, Relationship to Database Management Systems, Digital Libraries and Data Warehouses

Information Retrieval System Capabilities: Search Capabilities, Browse Capabilities, Miscellaneous Capabilities

**UNIT - II**

Cataloging and Indexing: History and Objectives of Indexing, Indexing Process, Automatic Indexing, Information Extraction

Data Structure: Introduction to Data Structure, Stemming Algorithms, Inverted File Structure, N-Gram Data Structures, PAT Data Structure, Signature File Structure, Hypertext and XML Data Structures, Hidden Markov Models

**UNIT - III**

Automatic Indexing: Classes of Automatic Indexing, Statistical Indexing, Natural Language, Concept Indexing, Hypertext Linkages. Document and Term Clustering: Introduction to Clustering, Thesaurus Generation, Item Clustering, Hierarchy of Clusters

**UNIT - IV**

User Search Techniques: Search Statements and Binding, Similarity Measures and Ranking, Relevance Feedback, Selective Dissemination of Information Search, Weighted Searches of Boolean Systems, Searching the INTERNET and Hypertext

Information Visualization: Introduction to Information Visualization, Cognition and Perception, Information Visualization Technologies

**UNIT - V**

Text Search Algorithms: Introduction to Text Search Techniques, Software Text Search Algorithms, Hardware Text Search Systems

Multimedia Information Retrieval: Spoken Language Audio Retrieval, Non-Speech Audio Retrieval, Graph Retrieval, Imagery Retrieval, Video Retrieval

**TEXT BOOK:**

1. Information Storage and Retrieval Systems – Theory and Implementation, Second Edition, Gerald J. Kowalski, Mark T. Maybury, Springer.

**REFERENCE BOOKS:**

1. Frakes, W.B., Ricardo Baeza-Yates: Information Retrieval Data Structures and Algorithms, Prentice Hall, 1992.
2. Information Storage & Retrieval By Robert Korfhage – John Wiley & Sons.
3. Modern Information Retrieval By Yates and Neto Pearson Education.

## **SOFTWARE PROJECT MANAGEMENT (Professional Elective – II)**

**B.Tech. III Year I Sem.**

|          |          |          |          |
|----------|----------|----------|----------|
| <b>L</b> | <b>T</b> | <b>P</b> | <b>C</b> |
| <b>3</b> | <b>0</b> | <b>0</b> | <b>3</b> |

**Prerequisites:** A course on “Software Engineering”.

### **Course Objectives**

1. To develop skills in software project management
2. The topics include-software economics; software development life cycle; artifacts of the process; workflows; checkpoints; project organization and responsibilities; project control and process instrumentation.

### **Course Outcomes**

1. Gain knowledge of software economics, phases in the life cycle of software development, project organization, project control and process instrumentation.
2. Analyze the major and minor milestones, artifacts and metrics from management and technical perspective.
3. Design and develop software product using conventional and modern principles of software project management

### **UNIT - I**

**Conventional Software Management:** The waterfall model, conventional software Management performance. **Evolution of Software Economics:** Software economics, pragmatic software cost estimation.

### **UNIT - II**

**Improving Software Economics:** Reducing Software product size, improving software processes, improving team effectiveness, improving automation, Achieving required quality, peer inspections.

**The old way and the new:** The principles of conventional software Engineering, principles of modern software management, transitioning to an iterative process.

### **UNIT - III**

**Life cycle phases:** Engineering and production stages, inception, Elaboration, construction, transition phases. **Artifacts of the process:** The artifact sets, Management artifacts, Engineering artifacts, programmatic artifacts. **Model based software architectures:** A Management perspective and technical perspective. **Work Flows of the process:** Software process workflows, Iteration workflows.

### **UNIT - IV**

**Checkpoints of the process:** Major milestones, Minor Milestones, Periodic status assessments. Iterative Process Planning: work breakdown structures, planning guidelines, cost and schedule estimating, Iteration planning process, Pragmatic planning. **Project Organizations and Responsibilities:** Line-of-Business Organizations, Project Organizations, evolution of Organizations.

**Process Automation:** Automation building blocks, The Project Environment.

### **UNIT - V**

**Project Control and Process instrumentation:** The seven core Metrics, Management indicators, quality indicators, life cycle expectations, pragmatic Software Metrics, Metrics automation. Tailoring the Process: Process discriminates. **Future Software Project Management:** modern Project Profiles, Next generation Software economics, modern process transitions. **Case Study:** The command Center Processing and Display system- Replacement (CCPDS-R).

### **TEXT BOOK:**

1. Software Project Management, Walker Royce: Pearson Education, 2005.

### **REFERENCE BOOKS:**

1. Software Project Management, Bob Hughes and Mike Cotterell: Tata McGraw-Hill Edition.
2. Software Project Management, Joel Henry, Pearson Education.
3. Software Project Management in practice, Pankaj Jalote, Pearson Education. 2005.

## DEVOPS (Professional Elective – II)

**B.Tech. III Year I Sem.**

|          |          |          |          |
|----------|----------|----------|----------|
| <b>L</b> | <b>T</b> | <b>P</b> | <b>C</b> |
| <b>3</b> | <b>0</b> | <b>0</b> | <b>3</b> |

**Course Objectives:** The main objectives of this course are to

1. Describe the agile relationship between development and IT operations.
2. Understand the skill sets and high-functioning teams involved in DevOps and related methods to reach a continuous delivery capability
3. Implement automated system update and DevOps lifecycle

**Course Outcomes:** On successful completion of this course, students will be able to:

1. Identify components of Devops environment
2. Describe Software development models and architectures of DevOps
3. Apply different project management, integration, testing and code deployment tool
4. Investigate different DevOps Software development models
5. Assess various Devops practices
6. Collaborate and adopt Devops in real-time projects

### **UNIT - I**

**Introduction:** Introduction, Agile development model, DevOps, and ITIL. DevOps process and Continuous Delivery, Release management, Scrum, Kanban, delivery pipeline, bottlenecks, examples

### **UNIT - II**

**Software development models and DevOps:** DevOps Lifecycle for Business Agility, DevOps, and Continuous Testing.

**DevOps influence on Architecture:** Introducing software architecture, The monolithic scenario, Architecture rules of thumb, The separation of concerns, Handling database migrations, Microservices, and the data tier, DevOps, architecture, and resilience.

### **UNIT - III**

**Introduction to project management:** The need for source code control, The history of source code management, Roles and code, source code management system and migrations, Shared authentication, Hosted Git servers, Different Git server implementations, Docker intermission, Gerrit, The pull request model, GitLab.

### **UNIT - IV**

**Integrating the system:** Build systems, Jenkins build server, Managing build dependencies, Jenkins plugins, and file system layout, The host server, Build slaves, Software on the host, Triggers, Job chaining and build pipelines, Build servers and infrastructure as code, Building by dependency order, Build phases, Alternative build servers, Collating quality measures.

### **UNIT - V**

**Testing Tools and automation:** Various types of testing, Automation of testing Pros and cons, Selenium - Introduction, Selenium features, JavaScript testing, Testing backend integration points, Test-driven development, REPL-driven development

**Deployment of the system:** Deployment systems, Virtualization stacks, code execution at the client, Puppet master and agents, Ansible, Deployment tools: Chef, Salt Stack and Docker

### **TEXT BOOKS:**

1. Joakim Verona. Practical Devops, Second Edition. Ingram short title; 2nd edition (2018). ISBN-10: 1788392574
2. Deepak Gaikwad, Viral Thakkar. DevOps Tools from Practitioner's Viewpoint. Wiley publications. ISBN: 9788126579952

### **REFERENCE BOOK:**

1. Len Bass, Ingo Weber, Liming Zhu. DevOps: A Software Architect's Perspective. Addison Wesley; ISBN-10.

**COMPUTER VISION AND ROBOTICS (Professional Elective – II)****B.Tech. III Year I Sem.**

|          |          |          |          |
|----------|----------|----------|----------|
| <b>L</b> | <b>T</b> | <b>P</b> | <b>C</b> |
| <b>3</b> | <b>0</b> | <b>0</b> | <b>3</b> |

**Pre-Requisites:** UG level Course in Linear Algebra and Probability.**Course Objectives:**

1. To understand the Fundamental Concepts Related To sources, shadows and shading.
2. To understand the The Geometry of Multiple Views.

**Course Outcomes:**

1. Implement fundamental image processing techniques required for computer vision.
2. Implement boundary tracking techniques.
3. Apply chain codes and other region descriptors, Hough Transform for line, circle, and ellipse detections.
4. Apply 3D vision techniques and Implement motion related techniques.
5. Develop applications using computer vision techniques.

**UNIT - I****CAMERAS:** Pinhole Cameras.**Radiometry – Measuring Light:** Light in Space, Light Surfaces, Important Special Cases.**Sources, Shadows, And Shading:** Qualitative Radiometry, Sources and Their Effects, Local Shading Models, Application: Photometric Stereo, Interreflections: Global Shading Models.**Color:** The Physics of Color, Human Color Perception, Representing Color, A Model for Image Color, Surface Color from Image Color.**UNIT - II****Linear Filters:** Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and Fourier Transforms, Sampling and Aliasing, Filters as Templates.**Edge Detection:** Noise, Estimating Derivatives, Detecting Edges.**Texture:** Representing Texture, Analysis (and Synthesis) Using Oriented Pyramids, Application: Synthesis by Sampling Local Models, Shape from Texture.**UNIT - III****The Geometry of Multiple Views:** Two Views.**Stereopsis:** Reconstruction, Human Stereopsis, Binocular Fusion, Using More Cameras.**Segmentation by Clustering:** What Is Segmentation? Human Vision: Grouping and Gestalt, Applications: Shot Boundary Detection and Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering,**UNIT - IV****Segmentation by Fitting a Model:** The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness**Segmentation and Fitting Using Probabilistic Methods:** Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice.**Tracking With Linear Dynamic Models:** Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples**UNIT - V****Geometric Camera Models:** Elements of Analytical Euclidean Geometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations.**Geometric Camera Calibration:** Least-Squares Parameter Estimation, A Linear Approach to Camera

Calibration, Taking Radial Distortion into Account, Analytical Photogrammetry, An Application: Mobile Robot Localization.

**Model-Based Vision:** Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by pose Clustering, Obtaining Hypotheses Using Invariants, Verification, Application: Registration In Medical Imaging Systems, Curved Surfaces and Alignment.

**TEXT BOOKS:**

1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009.

**REFERENCE BOOKS:**

1. E. R. Davies: Computer and Machine Vision – Theory, Algorithms and Practicalities, Elsevier (Academic Press), 4th edition, 2013.
2. R. C. Gonzalez and R. E. Woods "Digital Image Processing" Addison Wesley 2008.
3. Richard Szeliski "Computer Vision: Algorithms and Applications" Springer-Verlag London Limited 2011.

**DATA MINING LAB****B.Tech. III Year I Sem.**

|          |          |          |            |
|----------|----------|----------|------------|
| <b>L</b> | <b>T</b> | <b>P</b> | <b>C</b>   |
| <b>0</b> | <b>0</b> | <b>3</b> | <b>1.5</b> |

**Prerequisites:** A course on “Database Management System”.

**Course Objectives:**

1. The course is intended to obtain hands-on experience using data mining software.
2. Intended to provide practical exposure of the concepts in data mining algorithms.

**Course Outcomes:**

3. Apply preprocessing statistical methods for any given raw data.
4. Gain practical experience of constructing a data warehouse.
5. Implement various algorithms for data mining in order to discover interesting patterns from large amounts of data.
6. Apply OLAP operations on data cube construction.

**LIST OF EXPERIMENTS:**

Experiments using Weka & Pentaho Tools

1. Data Processing Techniques:
  - (i) Data cleaning
  - (ii) Data transformation – Normalization
  - (iii) Data integration
2. Partitioning - Horizontal, Vertical, Round Robin, Hash based
3. Data Warehouse schemas – star, snowflake, fact constellation
4. Data cube construction – OLAP operations
5. Data Extraction, Transformations & Loading operations
6. Implementation of Attribute oriented induction algorithm
7. Implementation of apriori algorithm
8. Implementation of FP – Growth algorithm
9. Implementation of Decision Tree Induction
10. Calculating Information gain measures
11. Classification of data using Bayesian approach
12. Classification of data using K – nearest neighbour approach
13. Implementation of K – means algorithm
14. Implementation of BIRCH algorithm
15. Implementation of PAM algorithm
16. Implementation of DBSCAN algorithm

**TEXT BOOKS:**

1. Data Mining – Concepts and Techniques - JIAWEI HAN & MICHELINE KAMBER, Elsevier.
2. Data Warehousing, Data Mining & OLAP- Alex Berson and Stephen J. Smith- Tata McGraw-Hill Edition, Tenth reprint 2007.

**REFERENCE BOOK:**

1. Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Anuj Karpatne, Introduction to Data Mining, Pearson Education.

## COMPUTER NETWORKS LAB

**B.Tech. III Year I Sem.**

|          |          |          |            |
|----------|----------|----------|------------|
| <b>L</b> | <b>T</b> | <b>P</b> | <b>C</b>   |
| <b>0</b> | <b>0</b> | <b>3</b> | <b>1.5</b> |

**Course Objectives:**

1. To understand the working principle of various communication protocols.
2. To understand the network simulator environment and visualize a network topology and observe its performance
3. To analyze the traffic flow and the contents of protocol frames

**Course Outcomes:**

1. Implement data link layer framing methods
2. Analyze error detection and error correction codes.
3. Implement and analyze routing and congestion issues in network design.
4. Implement Encoding and Decoding techniques used in presentation layer
5. To be able to work with different network tools

**List of Experiments**

1. Implement the data link layer framing methods such as character, character-stuffing and bit stuffing.
2. Write a program to compute CRC code for the polynomials CRC-12, CRC-16 and CRC CCIP
3. Develop a simple data link layer that performs the flow control using the sliding window protocol, and loss recovery using the Go-Back-N mechanism.
4. Implement Dijkstra's algorithm to compute the shortest path through a network
5. Take an example subnet of hosts and obtain a broadcast tree for the subnet.
6. Implement distance vector routing algorithm for obtaining routing tables at each node.
7. Implement data encryption and data decryption
8. Write a program for congestion control using Leaky bucket algorithm.
9. Write a program for frame sorting techniques used in buffers.
10. Wireshark
  - i. Packet Capture Using Wire shark
  - ii. Starting Wire shark
  - iii. Viewing Captured Traffic
  - iv. Analysis and Statistics & Filters.
11. How to run Nmap scan
12. Operating System Detection using Nmap
13. Do the following using NS2 Simulator
  - i. NS2 Simulator-Introduction
  - ii. Simulate to Find the Number of Packets Dropped
  - iii. Simulate to Find the Number of Packets Dropped by TCP/UDP
  - iv. Simulate to Find the Number of Packets Dropped due to Congestion
  - v. Simulate to Compare Data Rate & Throughput.
  - vi. Simulate to Plot Congestion for Different Source/Destination
  - vii. Simulate to Determine the Performance with respect to Transmission of Packets

**TEXT BOOK:**

1. Computer Networks, Andrew S Tanenbaum, David. j. Wetherall, 5<sup>th</sup> Edition. Pearson Education/PHI.

**REFERENCE BOOKS:**

1. An Engineering Approach to Computer Networks, S. Keshav, 2<sup>nd</sup> Edition, Pearson Education
2. Data Communications and Networking – Behrouz A. Forouzan. 3rd Edition, TMH.

## ADVANCED COMMUNICATION SKILLS LAB

**B.Tech. III Year I Sem.**

|          |          |          |          |
|----------|----------|----------|----------|
| <b>L</b> | <b>T</b> | <b>P</b> | <b>C</b> |
| <b>0</b> | <b>0</b> | <b>2</b> | <b>1</b> |

### **1. INTRODUCTION:**

The introduction of the Advanced Communication Skills Lab is considered essential at 3<sup>rd</sup> year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalized context.

The proposed course should be a laboratory course to enable students to use 'good' English and perform the following:

- Gathering ideas and information to organize ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- Facing interviews.
- Writing project/research reports/technical reports.
- Making oral presentations.
- Writing formal letters.
- Transferring information from non-verbal to verbal texts and vice-versa.
- Taking part in social and professional communication.

### **2. OBJECTIVES:**

This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students' fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.
- To prepare all the students for their placements.

### **3. SYLLABUS:**

The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:

1. **Activities on Fundamentals of Inter-personal Communication and Building Vocabulary** - Starting a conversation – responding appropriately and relevantly – using the right body language – Role Play in different situations & Discourse Skills- using visuals - Synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, business vocabulary, analogy, idioms and phrases, collocations & usage of vocabulary.
2. **Activities on Reading Comprehension** –General Vs Local comprehension, reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, critical reading& effective googling.
3. **Activities on Writing Skills** – Structure and presentation of different types of writing – *letter writing/Resume writing/ e-correspondence/Technical report writing/* – planning for writing – improving one's writing.
4. **Activities on Presentation Skills** – Oral presentations (individual and group) through JAM sessions/seminars/PPTs and written presentations through posters/projects/reports/ e-mails/assignments etc.
5. **Activities on Group Discussion and Interview Skills** – Dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and organization of ideas and rubrics for evaluation- Concept and process, pre-interview planning, opening strategies, answering strategies, interview through tele-conference & video-conference and Mock Interviews.

**4. MINIMUM REQUIREMENT:**

The Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics.
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- P – IV Processor, Hard Disk – 80 GB, RAM–512 MB Minimum, Speed – 2.8 GHZ
- T. V, a digital stereo & Camcorder
- Headphones of High quality

**5. SUGGESTED SOFTWARE:**

The software consisting of the prescribed topics elaborated above should be procured and used.

- Oxford Advanced Learner's Compass, 7<sup>th</sup> Edition
- DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
- Lingua TOEFL CBT Insider, by Dream tech
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)

**TEXT BOOKS:**

1. Effective Technical Communication by M Asharaf Rizvi. McGraw Hill Education (India) Pvt. Ltd. 2<sup>nd</sup> Edition
2. Academic Writing: A Handbook for International Students by Stephen Bailey, Routledge, 5<sup>th</sup> Edition.

**REFERENCE BOOKS:**

1. Learn Correct English – A Book of Grammar, Usage and Composition by Shiv K. Kumar and Hemalatha Nagarajan. Pearson 2007
2. Professional Communication by Aruna Koneru, McGraw Hill Education (India) Pvt. Ltd, 2016.
3. Technical Communication by Meenakshi Raman & Sangeeta Sharma, Oxford University Press 2009.
4. Technical Communication by Paul V. Anderson. 2007. Cengage Learning pvt. Ltd. New Delhi.
5. English Vocabulary in Use series, Cambridge University Press 2008.
6. Handbook for Technical Communication by David A. McMurrey & Joanne Buckley. 2012. Cengage Learning.
7. Communication Skills by Leena Sen, PHI Learning Pvt Ltd., New Delhi, 2009.
8. Job Hunting by Colm Downes, Cambridge University Press 2008.
9. English for Technical Communication for Engineering Students, Aysha Vishwamohan, Tata Mc Graw-Hill 2009.

## **INTELLECTUAL PROPERTY RIGHTS**

**B.Tech. III Year I Sem.**

|          |          |          |          |
|----------|----------|----------|----------|
| <b>L</b> | <b>T</b> | <b>P</b> | <b>C</b> |
| <b>3</b> | <b>0</b> | <b>0</b> | <b>0</b> |

### **UNIT – I**

Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

### **UNIT – II**

Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes.

### **UNIT – III**

Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.

Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

### **UNIT – IV**

Trade Secrets: Trade secrete law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation.

Unfair competition: Misappropriation right of publicity, false advertising.

### **UNIT – V**

New development of intellectual property: new developments in trade mark law; copy right law, patent law, intellectual property audits.

International overview on intellectual property, international – trade mark law, copy right law, international patent law, and international development in trade secrets law.

### **TEXT & REFERENCE BOOKS:**

1. Intellectual property right, Deborah. E. Bouchoux, Cengage learning.
2. Intellectual property right – Unleashing the knowledge economy, prabuddha ganguli, Tata McGraw Hill Publishing company ltd.