

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech in CSE (DATA SCIENCE)
III & IV YEAR COURSE STRUCTURE & TENTATIVE SYLLABUS (R18)

Applicable From 2020-21 Admitted Batch

III YEAR I SEMESTER

S. No.	Course Code	Course Title	L	T	P	Credits
1		Design and Analysis of Algorithms	3	0	0	3
2		Introduction to Data Science	3	0	0	3
3		Computer Networks	3	0	0	3
4		Data Mining	3	0	0	3
5		Professional Elective - I	3	0	0	3
6		Professional Elective - II	3	0	0	3
7		Data Mining Lab	0	0	3	1.5
8		Computer Networks Lab	0	0	3	1.5
9		Advanced Communication Skills Lab	0	0	2	1
10		Intellectual Property Rights	3	0	0	0
		Total Credits	21	0	8	22

III YEAR II SEMESTER

S. No.	Course Code	Course Title	L	T	P	Credits
1		Compiler Design	3	1	0	4
2		Machine Learning	3	1	0	4
3		Big Data Analytics	3	1	0	4
4		Professional Elective – III	3	0	0	3
5		Open Elective - I	3	0	0	3
6		Machine Learning Lab	0	0	3	1.5
7		Big Data Analytics Lab	0	0	3	1.5
8		Professional Elective - III Lab	0	0	2	1
9		Environmental Science	3	0	0	0
		Total Credits	18	3	8	22

IV YEAR I SEMESTER

S. No.	Course Code	Course Title	L	T	P	Credits
1		Predictive Analytics	3	0	0	3
2		Web and Social Media Analytics	2	0	0	2
3		Professional Elective – IV	3	0	0	3
4		Professional Elective – V	3	0	0	3
5		Open Elective – II	3	0	0	3
6		Web and Social Media Analytics Lab	0	0	2	1
7		Industrial Oriented Mini Project/ Summer Internship	0	0	0	2*
8		Seminar	0	0	2	1
9		Project Stage – I	0	0	6	3
		Total Credits	14	0	10	21

IV YEAR II SEMESTER

S. No.	Course Code	Course Title	L	T	P	Credits
1		Organizational Behaviour	3	0	0	3
2		Professional Elective -VI	3	0	0	3
3		Open Elective-III	3	0	0	3
4		Project Stage - II	0	0	14	7
		Total Credits	9	0	14	16

***Note:** Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit report of Industrial Oriented Mini Project/ Summer Internship for evaluation.

MC - Environmental Science – Should be Registered by Lateral Entry Students Only.

MC – Satisfactory/Unsatisfactory

Professional Elective-I

	Data Warehousing and Business Intelligence
	Artificial Intelligence
	Web Programming
	Image Processing
	Computer Graphics

Professional Elective - II

	Spatial and Multimedia Databases
	Information Retrieval Systems
	Software Project Management
	DevOps
	Computer Vision and Robotics

Professional Elective - III

	Software Testing Methodologies
	Data Visualization Techniques
	Scripting Languages
	Mobile Application Development
	Cryptography and Network Security

Courses in PE – III and PE – III Lab must be in 1-1 correspondence.

Professional Elective –IV

	Quantum Computing
	Database Security
	Natural Language Processing
	Information Storage Management
	Internet of Things

Professional Elective - V

	Privacy Preserving in Data Mining
	Cloud Computing
	Data Science Applications
	Mining Massive Datasets
	Exploratory Data Analysis

Professional Elective – VI

	Data Stream Mining
	Web Security
	Video Analytics
	Blockchain Technology
	Parallel and Distributed Computing

COMPILER DESIGN

B.Tech. III Year II Sem.

L	T	P	C
3	1	0	4

Prerequisites:

1. A course on "Formal Languages and Automata Theory".
2. A course on "Computer Organization and architecture".
3. A course on "Computer Programming and Data Structures".

Course Objectives:

- Introduce the major concepts of language translation and compiler design and impart the knowledge of practical skills necessary for constructing a compiler.
- Topics include phases of compiler, parsing, syntax directed translation, type checking use of symbol tables, code optimization techniques, intermediate code generation, code generation and data flow analysis.

Course Outcomes:

- Demonstrate the ability to design a compiler given a set of language features.
- Demonstrate the knowledge of patterns, tokens & regular expressions for lexical analysis.
- Acquire skills in using lex tool & yacc tool for developing a scanner and parser.
- Design and implement LL and LR parsers
- Design algorithms to do code optimization in order to improve the performance of a program in terms of space and time complexity.
- Design algorithms to generate machine code.

UNIT - I

Introduction: The structure of a compiler, the science of building a compiler, programming language basics. **Lexical Analysis:** The Role of the Lexical Analyzer, Input Buffering, Recognition of Tokens, The Lexical-Analyzer Generator Lex, Finite Automata, From Regular Expressions to Automata, Design of a Lexical-Analyzer Generator, Optimization of DFA-Based Pattern Matchers.

UNIT - II

Syntax Analysis: Introduction, Context-Free Grammars, Writing a Grammar, Top-Down Parsing, Bottom-Up Parsing, Introduction to LR Parsing: Simple LR, More Powerful LR Parsers, Using Ambiguous Grammars and Parser Generators.

UNIT - III

Syntax-Directed Translation: Syntax-Directed Definitions, Evaluation Orders for SDD's, Applications of Syntax-Directed Translation, Syntax-Directed Translation Schemes, Implementing L-Attributed SDD's. **Intermediate-Code Generation:** Variants of Syntax Trees, Three-Address Code, Types and Declarations, Type Checking, Control Flow, Switch-Statements, Intermediate Code for Procedures.

UNIT - IV

Run-Time Environments: Stack Allocation of Space, Access to Nonlocal Data on the Stack, Heap Management, Introduction to Garbage Collection, Introduction to Trace-Based Collection.

Code Generation: Issues in the Design of a Code Generator, The Target Language, Addresses in the Target Code, Basic Blocks and Flow Graphs, Optimization of Basic Blocks, A Simple Code Generator, Peephole Optimization, Register Allocation and Assignment, Dynamic Programming Code-Generation.

UNIT - V

Machine-Independent Optimization: The Principal Sources of Optimization, Introduction to Data-Flow Analysis, Foundations of Data-Flow Analysis, Constant Propagation, Partial-Redundancy Elimination, Loops in Flow Graphs.

TEXT BOOK:

1. Compilers: Principles, Techniques and Tools, Second Edition, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman.

REFERENCE BOOKS:

1. Lex & Yacc – John R. Levine, Tony Mason, Doug Brown, O'reilly
2. Compiler Construction, Louden, Thomson.

MACHINE LEARNING**B.Tech. III Year II Sem.**

L	T	P	C
3	1	0	4

Prerequisites

1. Data Structures.
2. Knowledge on statistical methods.

Course Objectives

- This course explains machine learning techniques such as decision tree learning, Bayesian learning etc.
- To understand computational learning theory.
- To study the pattern comparison techniques.

Course Outcomes

- Understand the concepts of computational intelligence like machine learning.
- Ability to get the skill to apply machine learning techniques to address the real time problems in different areas.
- Understand the Neural Networks and its usage in machine learning application.

UNIT - I

Introduction - Well-posed learning problems, designing a learning system, Perspectives and issues in machine learning.

Concept learning and the general to specific ordering – introduction, a concept learning task, concept learning as search, find-S: finding a maximally specific hypothesis, version spaces and the candidate elimination algorithm, remarks on version spaces and candidate elimination, inductive bias.

Decision Tree Learning – Introduction, decision tree representation, appropriate problems for decision tree learning, the basic decision tree learning algorithm, hypothesis space search in decision tree learning, inductive bias in decision tree learning, issues in decision tree learning.

UNIT - II

Artificial Neural Networks-1– Introduction, neural network representation, appropriate problems for neural network learning, perceptions, multilayer networks and the back-propagation algorithm.

Artificial Neural Networks-2- Remarks on the Back-Propagation algorithm, An illustrative example: face recognition, advanced topics in artificial neural networks.

Evaluation Hypotheses – Motivation, estimation hypothesis accuracy, basics of sampling theory, a general approach for deriving confidence intervals, difference in error of two hypotheses, comparing learning algorithms.

UNIT - III

Bayesian learning – Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum Likelihood and least squared error hypotheses, maximum likelihood hypotheses for predicting probabilities, minimum description length principle, Bayes optimal classifier, Gibbs algorithm, Naïve Bayes classifier, an example: learning to classify text, Bayesian belief networks, the EM algorithm.

Computational learning theory – Introduction, probably learning an approximately correct hypothesis, sample complexity for finite hypothesis space, sample complexity for infinite hypothesis spaces, the mistake bound model of learning.

Instance-Based Learning- Introduction, k -nearest neighbour algorithm, locally weighted regression, radial basis functions, case-based reasoning, remarks on lazy and eager learning.

UNIT- IV

Genetic Algorithms – Motivation, Genetic algorithms, an illustrative example, hypothesis space search, genetic programming, models of evolution and learning, parallelizing genetic algorithms.

Learning Sets of Rules – Introduction, sequential covering algorithms, learning rule sets: summary, learning First-Order rules, learning sets of First-Order rules: FOIL, Induction as inverted deduction, inverting resolution.

Reinforcement Learning – Introduction, the learning task, Q-learning, non-deterministic, rewards and actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.

UNIT - V

Analytical Learning-1- Introduction, learning with perfect domain theories: PROLOG-EBG, remarks on explanation-based learning, explanation-based learning of search control knowledge.

Analytical Learning-2-Using prior knowledge to alter the search objective, using prior knowledge to augment search operators.

Combining Inductive and Analytical Learning – Motivation, inductive-analytical approaches to learning, using prior knowledge to initialize the hypothesis.

TEXT BOOK:

1. Machine Learning – Tom M. Mitchell, - MGH.

REFERENCE BOOK:

1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis.

BIG DATA ANALYTICS

B.Tech. III Year II Sem.

L	T	P	C
3	1	0	4

Course Objectives:

1. The purpose of this course is to provide the students with the knowledge of Big data Analytics principles and techniques.
2. This course is also designed to give an exposure of the frontiers of Big data Analytics

Courses Outcomes:

1. Ability to explain the foundations, definitions, and challenges of Big Data and various Analytical tools.
2. Ability to program using HADOOP and Map reduce, NOSQL
3. Ability to understand the importance of Big Data in Social Media and Mining.

UNIT - I

Introduction to Big Data: Big Data and its Importance – Four V's of Big Data – Drivers for Big Data – Introduction to Big Data Analytics – Big Data Analytics applications.

UNIT - II

Big Data Technologies: Hadoop's Parallel World – Data discovery – Open source technology for Big Data Analytics – cloud and Big Data –Predictive Analytics – Mobile Business Intelligence and Big Data

UNIT - III

Introduction Hadoop: Big Data – Apache Hadoop & Hadoop Eco System – Moving Data in and out of Hadoop – Understanding inputs and outputs of MapReduce - Data Serialization.

UNIT - IV

Hadoop Architecture: Hadoop: RDBMS Vs Hadoop, Hadoop Overview, Hadoop distributors, HDFS, HDFS Daemons, Anatomy of File Write and Read., Name Node, Secondary Name Node, and Data Node, HDFS Architecture, Hadoop Configuration, Map Reduce Framework, Role of HBase in Big Data processing, HIVE, PIG.

UNIT - V

Data Analytics with R Machine Learning: Introduction, Supervised Learning, Unsupervised Learning, Collaborative Filtering, Social Media Analytics, Mobile Analytics, Big Data Analytics with BigR.

TEXT BOOKS:

1. Big Data Analytics, Seema Acharya, Subhasini Chellappan, Wiley 2015.
2. Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Michael Minelli, Michehe Chambers, 1st Edition, Ambiga Dhiraj, Wiely CIO Series, 2013.
3. Hadoop: The Definitive Guide, Tom White, 3rd Edition, O'Reilly Media, 2012.
4. Big Data Analytics: Disruptive Technologies for Changing the Game, Arvind Sathi, 1st Edition, IBM Corporation, 2012.

REFERENCE BOOKS:

1. Big Data and Business Analytics, Jay Liebowitz, Auerbach Publications, CRC press (2013)
2. Using R to Unlock the Value of Big Data: Big Data Analytics with Oracle R Enterprise and Oracle R Connector for Hadoop, Tom Plunkett, Mark Hornick, McGraw-Hill/Osborne Media (2013), Oracle press.
3. Professional Hadoop Solutions, Boris Iublinsky, Kevin t. Smith, Alexey Yakubovich, Wiley, ISBN: 9788126551071, 2015.
4. Understanding Big data, Chris Eaton, Dirk deroos et al. McGraw Hill, 2012.
5. Intelligent Data Analysis, Michael Berthold, David J. Hand, Springer, 2007.
6. Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics, Bill Franks, 1st Edition, Wiley and SAS Business Series, 2012.

SOFTWARE TESTING METHODOLOGIES (Professional Elective – III)**B.Tech. III Year II Sem.**

L	T	P	C
3	0	0	3

Prerequisites: A course on “Software Engineering”.**Course Objectives**

- To provide knowledge of the concepts in software testing such as testing process, criteria, strategies, and methodologies.
- To develop skills in software test automation and management using latest tools.

Course Outcomes: Design and develop the best test strategies in accordance to the development model.**UNIT - I**

Introduction: Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs.

Flow graphs and Path testing: Basics concepts of path testing, predicates, path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing.

UNIT - II

Transaction Flow Testing: transaction flows, transaction flow testing techniques. Dataflow testing: Basics of dataflow testing, strategies in dataflow testing, application of dataflow testing. Domain Testing: domains and paths, Nice & ugly domains, domain testing, domains and interfaces testing, domain and interface testing, domains and testability.

UNIT - III

Paths, Path products and Regular expressions: path products & path expression, reduction procedure, applications, regular expressions & flow anomaly detection.

Logic Based Testing: overview, decision tables, path expressions, kv charts, specifications.

UNIT - IV

State, State Graphs and Transition testing: state graphs, good & bad state graphs, state testing, Testability tips.

UNIT - V

Graph Matrices and Application: Motivational overview, matrix of graph, relations, power of a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool like JMeter or Win-runner).

TEXT BOOKS:

1. Software Testing techniques - Baris Beizer, Dreamtech, second edition.
2. Software Testing Tools – Dr. K. V. K. K. Prasad, Dreamtech.

REFERENCE BOOKS:

1. The craft of software testing - Brian Marick, Pearson Education.
2. Software Testing Techniques – SPD(Oreille)
3. Software Testing in the Real World – Edward Kit, Pearson.
4. Effective methods of Software Testing, Perry, John Wiley.
5. Art of Software Testing – Meyers, John Wiley.

DATA VISUALIZATION TECHNIQUES (Professional Elective – III)

B.Tech. III Year II Sem.

L	T	P	C
3	0	0	3

Course Objective: To understand various data visualization techniques.

Course Outcomes:

1. Visualize the objects in different dimensions.
2. Design and process the data for Virtualization.
3. Apply the visualization techniques in physical sciences, computer science, applied mathematics and medical science.
4. Apply the virtualization techniques for research projects. (K1, K3).

UNIT - I

Introduction and Data Foundation: Basics - Relationship between Visualization and Other Fields - The Visualization Process - Pseudo code Conventions - The Scatter plot. Data Foundation - Types of Data - Structure within and between Records - Data Preprocessing - Data Sets

UNIT - II

Foundations for Visualization: Visualization stages - Semiology of Graphical Symbols - The Eight Visual Variables - Historical Perspective - Taxonomies - Experimental Semiotics based on Perception Gibson's Affordance theory – A Model of Perceptual Processing.

UNIT - III

Visualization Techniques: Spatial Data: One-Dimensional Data - Two-Dimensional Data – Three-Dimensional Data - Dynamic Data - Combining Techniques. **Geospatial Data:** Visualizing Spatial Data - Visualization of Point Data - Visualization of Line Data - Visualization of Area Data - Other Issues in Geospatial Data Visualization **Multivariate Data:** Point-Based Techniques - Line- Based Techniques - Region-Based Techniques - Combinations of Techniques – Trees Displaying Hierarchical Structures – Graphics and Networks- Displaying Arbitrary Graphs/Networks.

UNIT - IV

Interaction Concepts and Techniques: Text and Document Visualization: Introduction - Levels of Text Representations - The Vector Space Model - Single Document Visualizations - Document Collection Visualizations - Extended Text Visualizations **Interaction Concepts:** Interaction Operators - Interaction Operands and Spaces - A Unified Framework. **Interaction Techniques:** Screen Space - Object-Space -Data Space -Attribute Space- Data Structure Space - Visualization Structure - Animating Transformations -Interaction Control

UNIT - V

Research Directions in Virtualizations: Steps in designing Visualizations – Problems in designing effective Visualizations- Issues of Data. Issues of Cognition, Perception, and Reasoning. Issues of System Design Evaluation, Hardware and Applications.

TEXT BOOKS:

1. Matthew Ward, Georges Grinstein and Daniel Keim, "Interactive Data Visualization Foundations, Techniques, Applications", 2010.
2. Colin Ware, "Information Visualization Perception for Design", 2nd edition, Mardon Kaufmann Publishers, 2004.

REFERENCE BOOKS:

1. Robert Spence "Information visualization – Design for interaction", Pearson Education, 2nd Edition, 2007.
2. Alexandru C. Telea, "Data Visualization: Principles and Practice," A. K. Peters Ltd, 2008.

SCRIPTING LANGUAGES (Professional Elective – III)

B.Tech. III Year II Sem.

L T P C
3 0 0 3

Prerequisites:

1. A course on “Computer Programming and Data Structures”.
2. A course on “Object Oriented Programming Concepts”.

Course Objectives:

- This course introduces the script programming paradigm.
- Introduces scripting languages such as Perl, Ruby and TCL.
- Learning TCL

Course Outcomes:

- Comprehend the differences between typical scripting languages and typical system and application programming languages.
- Gain knowledge of the strengths and weakness of Perl, TCL and Ruby; and select an appropriate language for solving a given problem.
- Acquire programming skills in scripting language.

UNIT - I

Introduction: Ruby, Rails, The structure and Execution of Ruby Programs, Package Management with RUBYGEMS, Ruby and web: Writing CGI scripts, cookies, Choice of Webservers, SOAP and webservices

RubyTk – Simple Tk Application, widgets, Binding events, Canvas, scrolling

UNIT - II

Extending Ruby: Ruby Objects in C, the Jukebox extension, Memory allocation, Ruby Type System, Embedding Ruby to Other Languages, Embedding a Ruby Interpreter

UNIT - III

Introduction to PERL and Scripting

Scripts and Programs, Origin of Scripting, Scripting Today, Characteristics of Scripting Languages, Uses for Scripting Languages, Web Scripting, and the universe of Scripting Languages. PERL- Names and Values, Variables, Scalar Expressions, Control Structures, arrays, list, hashes, strings, pattern and regular expressions, subroutines.

UNIT - IV

Advanced perl

Finer points of looping, pack and unpack, filesystem, eval, data structures, packages, modules, objects, interfacing to the operating system, Creating Internet ware applications, Dirty Hands Internet Programming, security Issues.

UNIT - V

TCL

TCL Structure, syntax, Variables and Data in TCL, Control Flow, Data Structures, input/output, procedures, strings, patterns, files, Advance TCL- eval, source, exec and uplevel commands, Name spaces, trapping errors, event driven programs, making applications internet aware, Nuts and Bolts Internet Programming, Security Issues, C Interface.

Tk

Tk-Visual Tool Kits, Fundamental Concepts of Tk, Tk by example, Events and Binding, Perl-Tk.

TEXT BOOKS:

1. The World of Scripting Languages, David Barron,Wiley Publications.
2. Ruby Programming language by David Flanagan and Yukihiro Matsumoto O'Reilly
3. "Programming Ruby" The Pramatic Progammers guide by Dabve Thomas Second edition

REFERENCE BOOKS:

1. Open Source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP, J. Lee and B. Ware (Addison Wesley) Pearson Education.
2. Perl by Example, E. Quigley, Pearson Education.
3. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O'Reilly, SPD.
4. Tcl and the Tk Tool kit, Ousterhout, Pearson Education.
5. Perl Power, J. P. Flynt, Cengage Learning.

MOBILE APPLICATION DEVELOPMENT (Professional Elective – III)**B.Tech. III Year II Sem.**

L	T	P	C
3	0	0	3

Prerequisites:

1. Acquaintance with JAVA programming.
2. A Course on DBMS.

Course Objectives:

- To demonstrate their understanding of the fundamentals of Android operating systems
- To improves their skills of using Android software development tools
- To demonstrate their ability to develop software with reasonable complexity on mobile platform
- To demonstrate their ability to deploy software to mobile devices
- To demonstrate their ability to debug programs running on mobile devices

Course Outcomes:

- Student understands the working of Android OS Practically.
- Student will be able to develop Android user interfaces
- Student will be able to develop, deploy and maintain the Android Applications.

UNIT - I

Introduction to Android Operating System: Android OS design and Features – Android development framework, SDK features, Installing and running applications on Android Studio, Creating AVDs, Types of Android applications, Best practices in Android programming, Android tools

Android application components – Android Manifest file, Externalizing resources like values, themes, layouts, Menus etc, Resources for different devices and languages, Runtime Configuration Changes
Android Application Lifecycle – Activities, Activity lifecycle, activity states, monitoring state changes

UNIT - II

Android User Interface: Measurements – Device and pixel density independent measuring
UNIT - s Layouts – Linear, Relative, Grid and Table Layouts

User Interface (UI) Components – Editable and non-editable TextViews, Buttons, Radio and Toggle Buttons, Checkboxes, Spinners, Dialog and pickers

Event Handling – Handling clicks or changes of various UI components

Fragments – Creating fragments, Lifecycle of fragments, Fragment states, Adding fragments to Activity, adding, removing and replacing fragments with fragment transactions, interfacing between fragments and Activities, Multi-screen Activities

UNIT - III

Intents and Broadcasts: Intent – Using intents to launch Activities, Explicitly starting new Activity, Implicit Intents, Passing data to Intents, Getting results from Activities, Native Actions, using Intent to dial a number or to send SMS

Broadcast Receivers – Using Intent filters to service implicit Intents, Resolving Intent filters, finding and using Intents received within an Activity

Notifications – Creating and Displaying notifications, Displaying Toasts

UNIT - IV

Persistent Storage: Files – Using application specific folders and files, creating files, reading data from files, listing contents of a directory Shared Preferences – Creating shared preferences, saving and retrieving data using Shared Preference

UNIT - V

Database – Introduction to SQLite database, creating and opening a database, creating tables, inserting retrieving and updating data, Registering Content Providers, Using content Providers (insert, delete, retrieve and update)

TEXT BOOKS:

1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012.
2. Android Application Development for Java Programmers, James C Sheusi, Cengage Learning, 2013.

REFERENCE BOOK:

2. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013.

CRYPTOGRAPHY AND NETWORK SECURITY (Professional Elective – III)**B.Tech. III Year II Sem.**

L	T	P	C
3	0	0	3

Course Objectives:

- Explain the objectives of information security.
- Explain the importance and application of each of confidentiality, integrity, authentication and availability.
- Understand various cryptographic algorithms.
- Understand the basic categories of threats to computers and networks.
- Describe public-key cryptosystem.
- Describe the enhancements made to IPv4 by IPSec.
- Understand Intrusions and intrusion detection.
- Discuss the fundamental ideas of public-key cryptography.
- Generate and distribute a PGP key pair and use the PGP package to send an encrypted e-mail message.
- Discuss Web security and Firewalls.

Course Outcomes:

- Student will be able to understand basic cryptographic algorithms, message and web authentication and security issues.
- Ability to identify information system requirements for both of them such as client and server.
- Ability to understand the current legal issues towards information security.

UNIT - I

Security Concepts: Introduction, The need for security, Security approaches, Principles of security, Types of Security attacks, Security services, Security Mechanisms, A model for Network Security.

Cryptography Concepts and Techniques: Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, steganography, key range and key size, possible types of attacks.

UNIT - II

Symmetric key Ciphers: Block Cipher principles, DES, AES, Blowfish, RC5, IDEA, Block cipher operation, Stream ciphers, RC4.

Asymmetric key Ciphers: Principles of public key cryptosystems, RSA algorithm, Elgamal Cryptography, Diffie-Hellman Key Exchange, Knapsack Algorithm.

UNIT - III

Cryptographic Hash Functions: Message Authentication, Secure Hash Algorithm (SHA-512),

Message authentication codes: Authentication requirements, HMAC, CMAC, Digital signatures, Elgamal Digital Signature Scheme.

Key Management and Distribution: Symmetric Key Distribution Using Symmetric & Asymmetric Encryption, Distribution of Public Keys, Kerberos, X.509 Authentication Service, Public – Key Infrastructure.

UNIT - IV

Transport-level Security: Web security considerations, Secure Socket Layer and Transport Layer Security, HTTPS, Secure Shell (SSH).

Wireless Network Security: Wireless Security, Mobile Device Security, IEEE 802.11 Wireless LAN, IEEE 802.11i Wireless LAN Security.

UNIT - V

E-Mail Security: Pretty Good Privacy, S/MIME **IP Security:** IP Security overview, IP Security architecture, Authentication Header, Encapsulating security payload, Combining security associations, Internet Key Exchange.

Case Studies on Cryptography and security: Secure Multiparty Calculation, Virtual Elections, Single sign On, Secure Inter-branch Payment Transactions, Cross site Scripting Vulnerability.

TEXT BOOKS:

1. Cryptography and Network Security - Principles and Practice: William Stallings, Pearson Education, 6th Edition.
2. Cryptography and Network Security: Atul Kahate, Mc Graw Hill, 3rd Edition.

REFERENCE BOOKS:

1. Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, 1st Edition.
2. Cryptography and Network Security: Forouzan Mukhopadhyay, Mc Graw Hill, 3rd Edition.
3. Information Security, Principles, and Practice: Mark Stamp, Wiley India.
4. Principles of Computer Security: WM. Arthur Conklin, Greg White, TMH.
5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning.
6. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning.

MACHINE LEARNING LAB

B.Tech. III Year II Sem.

L	T	P	C
0	0	3	1.5

Course Objective: The objective of this lab is to get an overview of the various machine learning techniques and can able to demonstrate them using python.

Course Outcomes: After the completion of the course the student can able to:

- understand complexity of Machine Learning algorithms and their limitations;
- understand modern notions in data analysis-oriented computing;
- be capable of confidently applying common Machine Learning algorithms in practice and implementing their own;
- Be capable of performing experiments in Machine Learning using real-world data.

List of Experiments

1. The probability that it is Friday and that a student is absent is 3 %. Since there are 5 school days in a week, the probability that it is Friday is 20 %. What is the probability that a student is absent given that today is Friday? Apply Baye's rule in python to get the result. (Ans: 15%)
2. Extract the data from database using python
3. Implement k-nearest neighbours classification using python
4. Given the following data, which specify classifications for nine combinations of VAR1 and VAR2 predict a classification for a case where VAR1=0.906 and VAR2=0.606, using the result of k-means clustering with 3 means (i.e., 3 centroids)

VAR1	VAR2	CLASS
1.713	1.586	0
0.180	1.786	1
0.353	1.240	1
0.940	1.566	0
1.486	0.759	1
1.266	1.106	0
1.540	0.419	1
0.459	1.799	1
0.773	0.186	1

5. The following training examples map descriptions of individuals onto high, medium and low credit-worthiness.

medium skiing design single twenties no -> highRisk
 high golf trading married forties yes -> lowRisk
 low speedway transport married thirties yes -> medRisk
 medium football banking single thirties yes -> lowRisk
 high flying media married fifties yes -> highRisk
 low football security single twenties no -> medRisk
 medium golf media single thirties yes -> medRisk
 medium golf transport married forties yes -> lowRisk
 high skiing banking single thirties yes -> highRisk
 low golf unemployed married forties yes -> highRisk

Input attributes are (from left to right) income, recreation, job, status, age-group, home-owner. Find the unconditional probability of 'golf' and the conditional probability of 'single' given 'medRisk' in the dataset?

6. Implement linear regression using python.
7. Implement Naïve Bayes theorem to classify the English text
8. Implement an algorithm to demonstrate the significance of genetic algorithm
9. Implement the finite words classification system using Back-propagation algorithm

BIG DATA ANALYTICS LAB**B.Tech. III Year II Sem.**

L	T	P	C
0	0	3	1.5

Course Objectives:

1. The purpose of this course is to provide the students with the knowledge of Big data Analytics principles and techniques.
2. This course is also designed to give an exposure of the frontiers of Big data Analytics

Course Outcomes:

1. Use Excel as an Analytical tool and visualization tool.
2. Ability to program using HADOOP and Map reduce.
3. Ability to perform data analytics using ML in R.
4. Use cassandra to perform social media analytics.

List of Experiments:

1. Implement a simple map-reduce job that builds an inverted index on the set of input documents (Hadoop)
2. Process big data in HBase
3. Store and retrieve data in Pig
4. Perform Social media analysis using cassandra
5. Buyer event analytics using Cassandra on suitable product sales data.
6. Using Power Pivot (Excel) Perform the following on any dataset
 - a) Big Data Analytics
 - b) Big Data Charting
7. Use R-Project to carry out statistical analysis of big data
8. Use R-Project for data visualization of social media data

TEXT BOOKS:

1. Big Data Analytics, Seema Acharya, Subhashini Chellappan, Wiley 2015.
2. Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Michael Minelli, Michehe Chambers, 1st Edition, Ambiga Dhiraj, Wiely CIO Series, 2013.
3. Hadoop: The Definitive Guide, Tom White, 3rd Edition, O'Reilly Media, 2012.
4. Big Data Analytics: Disruptive Technologies for Changing the Game, Arvind Sathi, 1st Edition, IBM Corporation, 2012.

REFERENCE BOOKS:

1. Big Data and Business Analytics, Jay Liebowitz, Auerbach Publications, CRC press (2013).
2. Using R to Unlock the Value of Big Data: Big Data Analytics with Oracle R Enterprise and Oracle R Connector for Hadoop, Tom Plunkett, Mark Hornick, McGraw-Hill/Osborne Media (2013), Oracle press.
3. Professional Hadoop Solutions, Boris Lublinsky, Kevin t. Smith, Alexey Yakubovich, Wiley, ISBN: 9788126551071, 2015.
4. Understanding Big data, Chris Eaton, Dirk deroos et al., McGraw Hill, 2012.
5. Intelligent Data Analysis, Michael Berthold, David J. Hand, Springer, 2007.
6. Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics, Bill Franks, 1st Edition, Wiley and SAS Business Series, 2012.

SOFTWARE TESTING METHODOLOGIES LAB (PE – III Lab)

B.Tech. III Year II Sem.

L	T	P	C
0	0	2	1

Prerequisites: A basic knowledge of programming.

Course Objectives:

- To provide knowledge of Software Testing Methods.
- To develop skills in software test automation and management using latest tools.

Course Outcome:

- Design and develop the best test strategies in accordance to the development model.

List of Experiments:

1. Recording in context sensitive mode and analog mode
2. GUI checkpoint for single property
3. GUI checkpoint for single object/window
4. GUI checkpoint for multiple objects
5. a) Bitmap checkpoint for object/window
a) Bitmap checkpoint for screen area
6. Database checkpoint for Default check
7. Database checkpoint for custom check
8. Database checkpoint for runtime record check
9. a) Data driven test for dynamic test data submission
b) Data driven test through flat files
c) Data driven test through front grids
d) Data driven test through excel test
10. a) Batch testing without parameter passing
b) Batch testing with parameter passing
11. Data driven batch
12. Silent mode test execution without any interruption
13. Test case for calculator in windows application

TEXT BOOKS:

1. Software Testing techniques - Baris Beizer, Dreamtech, second edition.
2. Software Testing Tools – Dr. K. V. K. K. Prasad, Dreamtech.

REFERENCE BOOKS:

1. The craft of software testing - Brian Marick, Pearson Education.
2. Software Testing Techniques – SPD(Oreille)
3. Software Testing in the Real World – Edward Kit, Pearson.
4. Effective methods of Software Testing, Perry, John Wiley.
5. Art of Software Testing – Meyers, John Wiley.

DATA VISUALIZATION TECHNIQUES LAB (PE – III Lab)**B.Tech. III Year II Sem.**

L	T	P	C
0	0	2	1

Course Objectives:

1. Understand the various types of data, apply and evaluate the principles of data visualization.
2. Acquire skills to apply visualization techniques to a problem and its associated dataset.

Course Outcomes:

1. Identify the different data types, visualization types to bring out the insight.
2. Relate the visualization towards the problem based on the dataset to analyze and bring out valuable insight on a large dataset.
3. Demonstrate the analysis of a large dataset using various visualization techniques and tools.
4. Identify the different attributes and showcasing them in plots. Identify and create various visualizations for geospatial and table data.
5. Ability to create and interpret plots using R/Python.

List of Experiments:

1. Acquiring and plotting data.
2. Statistical Analysis – such as Multivariate Analysis, PCA, LDA, Correlation regression and analysis of variance.
3. Financial analysis using Clustering, Histogram and HeatMap.
4. Time-series analysis – stock market.
5. Visualization of various massive dataset - Finance - Healthcare - Census – Geospatial.
6. Visualization on Streaming dataset (Stock market dataset, weather forecasting).
7. Market-Basket Data analysis-visualization.
8. Text visualization using web analytics.

TEXT BOOKS:

1. Matthew Ward, Georges Grinstein and Daniel Keim, “Interactive Data Visualization Foundations, Techniques, Applications”, 2010.
2. Colin Ware, “Information Visualization Perception for Design”, 2nd edition, Margon Kaufmann Publishers, 2004.

REFERENCE BOOKS:

1. Robert Spence “Information visualization – Design for interaction”, Pearson Education, 2 nd Edition, 2007.
2. Alexandru C. Telea, “Data Visualization: Principles and Practice,” A. K. Peters Ltd, 2008.

SCRIPTING LANGUAGES LAB (PE – III Lab)**B.Tech. III Year II Sem.**

L	T	P	C
0	0	2	1

Prerequisites: Any High-level programming language (C, C++).

Course Objectives:

1. To Understand the concepts of scripting languages for developing web-based projects
2. To understand the applications of Ruby, TCL, Perl scripting languages

Course Outcomes:

1. Ability to understand the differences between Scripting languages and programming languages
2. Able to gain some fluency programming in Ruby, Perl, TCL

List of Experiments:

1. Write a Ruby script to create a new string which is n copies of a given string where n is a non-negative integer
2. Write a Ruby script which accept the radius of a circle from the user and compute the parameter and area.
3. Write a Ruby script which accept the user's first and last name and print them in reverse order with a space between them
4. Write a Ruby script to accept a filename from the user print the extension of that
5. Write a Ruby script to find the greatest of three numbers
6. Write a Ruby script to print odd numbers from 10 to 1
7. Write a Ruby script to check two integers and return true if one of them is 20 otherwise return their sum
8. Write a Ruby script to check two temperatures and return true if one is less than 0 and the other is greater than 100
9. Write a Ruby script to print the elements of a given array
10. Write a Ruby program to retrieve the total marks where subject name and marks of a student stored in a hash
11. Write a TCL script to find the factorial of a number
12. Write a TCL script that multiplies the numbers from 1 to 10
13. Write a TCL script for Sorting a list using a comparison function
14. Write a TCL script to (i)create a list (ii)append elements to the list (iii)Traverse the list (iv)Concatenate the list
15. Write a TCL script to comparing the file modified times.
16. Write a TCL script to Copy a file and translate to native format.
17. a) Write a Perl script to find the largest number among three numbers.
b) Write a Perl script to print the multiplication tables from 1-10 using subroutines.
18. Write a Perl program to implement the following list of manipulating functions
 - a)Shift
 - b)Unshift
 - c)Push
19. a) Write a Perl script to substitute a word, with another word in a string.
b) Write a Perl script to validate IP address and email address.
20. Write a Perl script to print the file in reverse order using command line arguments

TEXT BOOKS:

1. The World of Scripting Languages, David Barron,Wiley Publications.
2. Ruby Programming language by David Flanagan and Yukihiro Matsumoto O'Reilly

3. "Programming Ruby" The Pragmatic Programmer's guide by Dabve Thomas Second edition

REFERENCE BOOKS:

1. Open Source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP, J.Lee and B. Ware (Addison Wesley) Pearson Education.
2. Perl by Example, E. Quigley, Pearson Education.
3. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O'Reilly, SPD.
4. Tcl and the Tk Tool kit, Ousterhout, Pearson Education.
5. Perl Power, J. P. Flynt, Cengage Learning.

MOBILE APPLICATION DEVELOPMENT LAB (PE - III Lab)

B.Tech. III Year II Sem.

L	T	P	C
0	0	2	1

Course Objectives:

1. To learn how to develop Applications in android environment.
2. To learn how to develop user interface applications.
3. To learn how to develop URL related applications.

Course Outcomes:

1. Students understand the working of Android OS Practically.
2. Students will be able to develop user interfaces.
3. Students will be able to develop, deploy and maintain the Android Applications.

List of Experiments:

1. Create an Android application that shows Hello + name of the user and run it on an emulator.
(b) Create an application that takes the name from a text box and shows hello message along with the name entered in text box, when the user clicks the OK button.
2. Create a screen that has input boxes for User Name, Password, Address, Gender (radio buttons for male and female), Age (numeric), Date of Birth (Date Picket), State (Spinner) and a Submit button. On clicking the submit button, print all the data below the Submit Button. Use (a) Linear Layout (b) Relative Layout and (c) Grid Layout or Table Layout.
3. Develop an application that shows names as a list and on selecting a name it should show the details of the candidate on the next screen with a “Back” button. If the screen is rotated to landscape mode (width greater than height), then the screen should show list on left fragment and details on right fragment instead of second screen with back button. Use Fragment transactions and Rotation event listener.
4. Develop an application that uses a menu with 3 options for dialing a number, opening a website and to send an SMS. On selecting an option, the appropriate action should be invoked using intents.
5. Develop an application that inserts some notifications into Notification area and whenever a notification is inserted, it should show a toast with details of the notification.
6. Create an application that uses a text file to store user names and passwords (tab separated fields and one record per line). When the user submits a login name and password through a screen, the details should be verified with the text file data and if they match, show a dialog saying that login is successful. Otherwise, show the dialog with Login Failed message.
7. Create a user registration application that stores the user details in a database table.
8. Create a database and a user table where the details of login names and passwords are stored. Insert some names and passwords initially. Now the login details entered by the user should be verified with the database and an appropriate dialog should be shown to the user.
9. Create an admin application for the user table, which shows all records as a list and the admin can select any record for edit or modify. The results should be reflected in the table.
10. Develop an application that shows all contacts of the phone along with details like name, phone number, mobile number etc.

11. Create an application that saves user information like name, age, gender etc. in shared preference and retrieves them when the program restarts.

12. Create an alarm that rings every Sunday at 8:00 AM. Modify it to use a time picker to set alarm time.

13. Create an application that shows the given URL (from a text field) in a browser

TEXT BOOKS:

1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012.
2. Android Application Development for Java Programmers, James C Sheusi, Cengage Learning, 2013.

REFERENCE BOOK:

1. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013.

CRYPTOGRAPHY AND NETWORK SECURITY LAB (PE – III Lab)**B.Tech. III Year II Sem.**

L	T	P	C
0	0	2	1

Course Objectives:

1. Explain the objectives of information security.
2. Explain the importance and application of each of confidentiality, integrity, authentication and availability.
3. Understand various cryptographic algorithms.

Course Outcomes:

1. Understand basic cryptographic algorithms, message and web authentication and security issues.
2. Identify information system requirements for both of them such as client and server.
3. Understand the current legal issues towards information security.

List of Experiments:

1. Write a C program that contains a string (char pointer) with a value 'Hello world'. The program should XOR each character in this string with 0 and displays the result.
2. Write a C program that contains a string (char pointer) with a value 'Hello world'. The program should AND or and XOR each character in this string with 127 and display the result.
3. Write a Java program to perform encryption and decryption using the following algorithms
 - a. Ceaser cipher
 - b. Substitution cipher
 - c. Hill Cipher
4. Write a C/JAVA program to implement the DES algorithm logic.
5. Write a C/JAVA program to implement the Blowfish algorithm logic.
6. Write a C/JAVA program to implement the Rijndael algorithm logic.
7. Write the RC4 logic in Java Using Java cryptography; encrypt the text "Hello world" using Blowfish. Create your own key using Java key tool.
8. Write a Java program to implement RSA algorithm.
9. Implement the Diffie-Hellman Key Exchange mechanism using HTML and JavaScript.
10. Calculate the message digest of a text using the SHA-1 algorithm in JAVA.
11. Calculate the message digest of a text using the MD5 algorithm in JAVA.

TEXT BOOKS:

1. Cryptography and Network Security - Principles and Practice: William Stallings, Pearson Education, 6th Edition.
2. Cryptography and Network Security: Atul Kahate, McGraw Hill, 3rd Edition.

REFERENCE BOOKS:

1. Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, 1st Edition.
2. Cryptography and Network Security: Forouzan Mukhopadhyay, McGraw Hill, 3rd Edition.
3. Information Security, Principles, and Practice: Mark Stamp, Wiley India.
4. Principles of Computer Security: WM. Arthur Conklin, Greg White, TMH.
5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning.
6. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning.

ENVIRONMENTAL SCIENCE

B.Tech. III Year II Sem.

L	T	P	C
3	0	0	0

Course Objectives:

- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures.
- Understanding the environmental policies and regulations

Course Outcomes:

- Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT-I

Ecosystems: Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT-II

Natural Resources: Classification of Resources: Living and Non-Living resources, **water resources:** use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. **Mineral resources:** use and exploitation, environmental effects of extracting and using mineral resources, **Land resources:** Forest resources, **Energy resources:** growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies.

UNIT-III

Biodiversity And Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT-IV

Environmental Pollution and Control Technologies: **Environmental Pollution:** Classification of pollution, **Air Pollution:** Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. **Water pollution:** Sources and types of pollution, drinking water quality standards. **Soil Pollution:** Sources and types, Impacts of modern agriculture, degradation of soil. **Noise Pollution:** Sources and Health hazards, standards, **Solid waste:** Municipal Solid Waste management, composition and characteristics of e-Waste and its management. **Pollution control technologies:** Wastewater Treatment methods: Primary, secondary and Tertiary. Overview of air pollution control technologies, Concepts of bioremediation. **Global Environmental Issues and Global Efforts:** Climate change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol, and Montréal Protocol. NAPCC-GoI Initiatives.

UNIT-V

Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socio-

economical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan (EMP). **Towards Sustainable Future:** Concept of Sustainable Development Goals, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

TEXT BOOKS:

- 1 Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
- 2 Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCE BOOKS:

- 1 Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL Learning Private Ltd. New Delhi.
- 2 Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHI Learning Pvt. Ltd.
- 3 Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition.
- 4 Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers.
- 5 Text book of Environmental Science and Technology - Dr. M. Anji Reddy 2007, BS Publications.
- 6 Introduction to Environmental Science by Y. Anjaneyulu, BS. Publications.