

VIGNAN'S INSTITUTE OF MANAGEMENT AND TECHNOLOGY FOR WOMEN

(An Autonomous Institution)

[Sponsored by Lavu Educational Society, Affiliated to JNTUH & Approved by AICTE, New Delhi]
Kondapur (V), Ghatkesar (M), Medchal - Malkajgiri (D) - 501 301. Phone: 96529 10002/3

COMPUTER SCIENCE AND ENGINEERING (Data Science)

COURSE STRUCTURE – VR24

I B.Tech. – I Semester

S.No.	Course Code	Course	L	T	P	Credits
1	MA101BS	Matrices and Calculus	3	1	0	4
2	PH102BS	Applied Physics	3	1	0	4
3	CS103ES	Programming for Problem Solving	3	0	0	3
4	ME104ES	Engineering Workshop	0	1	3	2.5
5	EN105HS	English for Skill Enhancement	2	0	0	2
6	CS106ES	Elements of Computer Science & Engineering	0	0	2	1
7	PH107BS	Applied Physics Laboratory	0	0	3	1.5
8	CS108ES	Programming for Problem Solving Laboratory	0	0	2	1
9	EN109HS	English Language and Communication Skills Laboratory	0	0	2	1
10	*MC110	Environmental Science	3	0	0	0
			Total	14	3	12
						20

I B.Tech. - II Semester

S.No.	Course Code	Course	L	T	P	Credits
1	MA201BS	Ordinary Differential Equations and Vector Calculus	3	1	0	4
2	CH202BS	Engineering Chemistry	3	1	0	4
3	ME203ES	Computer Aided Engineering Graphics	1	0	4	3
4	EE204ES	Basic Electrical Engineering	2	0	0	2
5	EC205ES	Electronic Devices and Circuits	2	0	0	2
6	CH206BS	Engineering Chemistry Laboratory	0	0	2	1
7	ML207ES	Python Programming Laboratory	0	1	2	2
8	EE208ES	Basic Electrical Engineering Laboratory	0	0	2	1
9	IT209ES	IT Workshop	0	0	2	1
			Total	11	3	12
						20

Note: L - Theory T - Tutorial P - Practical C - Credits

B.Tech. **L T P C**
I Year - II Semester **3 1 0 4**

ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

(Common for CSE, CSE(AI&ML), ECE, IT, CSE(DS))

Course Objectives: To learn

- Methods of solving the differential equations of first and higher order.
- Concept, properties of Laplace transform.
- Solving ordinary differential equations using Laplace transforms techniques.
- The physical quantities involved in engineering field related to vector valued functions.
- The basic properties of vector valued functions and their applications to line, surface and volume integrals.

Course outcomes: After learning the contents of this paper the student must be able to

- Identify whether the given differential equation of first order is exact or not.
- Solve higher differential equation and apply the concept of differential equation to real world problems.
- Use the Laplace transforms techniques for solving ODE's.
- Evaluate the line, surface and volume integrals and convert them from one to another.

UNIT-I: First Order ODE

Exact differential equations, Equations reducible to exact differential equations, linear and Bernoulli's equations, Orthogonal Trajectories (only in Cartesian Coordinates). Applications: Newton's law of cooling, Law of natural growth and decay.

UNIT-II: Ordinary Differential Equations of Higher Order

Second order linear differential equations with constant coefficients: Non-Homogeneous terms of the type e^{ax} , $\sin ax$, $\cos ax$, polynomials in x , $e^{ax} V(x)$ and $x V(x)$, method of variation of parameters, Equations reducible to linear ODE with constant coefficients: Legendre's equation, Cauchy-Euler equation. Applications: Electric Circuits.

UNIT-III: Laplace transforms

Laplace Transforms: Laplace Transform of standard functions, First shifting theorem, Second shifting theorem, Unit step function, Dirac delta function, Laplace transforms of functions when they are multiplied and divided by 't', Laplace transforms of derivatives and integrals of function, Evaluation of integrals by Laplace transforms, Laplace transform of periodic functions, Inverse Laplace transform by different methods, convolution theorem (without proof). Applications: solving Initial value problems by Laplace Transform method.

UNIT-IV: Vector Differentiation

Vector point functions and scalar point functions, Gradient, Divergence and Curl, Directional derivatives, Tangent plane and normal line, Vector Identities, Scalar potential functions, Solenoidal and Irrotational vectors.

UNIT-V: Vector Integration

Line, Surface and Volume Integrals, Theorems of Green, Gauss and Stokes (without proofs) and their applications.

Text Books:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010
2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Edition, 2016.

Reference Books:

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
3. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and Company Limited, New Delhi
4. N.P.Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

B Tech

I Year - II Semester

L T P C
3 1 0 4

ENGINEERING CHEMISTRY
(Common to CSE(AIML) & ECE)

Course Objectives:

- To bring adaptability to new developments in Engineering Chemistry and to acquire the skills required to become a perfect engineer.
- To include the importance of water in industrial usage, fundamental aspects of battery chemistry, significance of corrosion it's control to protect the structures.
- To imbibe the basic concepts of petroleum and its products.
- To acquire required knowledge about engineering materials like cement, smart materials and Lubricants.

Course Outcomes:

- Students will acquire the basic knowledge of electrochemical procedures related to corrosion and its control.
- The students are able to understand the basic properties of water and its usage in domestic and industrial purposes.
- They can learn the fundamentals and general properties of polymers and other engineering materials.
- They can predict potential applications of chemistry and practical utility in order to become good engineers and entrepreneurs.

UNIT - I: Water and its treatment:

Introduction to hardness of water – Estimation of hardness of water by complex metric method and related numerical problems. Potable water and its specifications - Steps involved in the treatment of potable water - Disinfection of potable water by chlorination and break - point chlorination. Defluoridation - Determination of F- ion by ion- selective electrode method.

Boiler troubles: Sludges, Scales and Caustic embrittlement. Internal treatment of Boiler feed water - Calgon conditioning - Phosphate conditioning - Colloidal conditioning, External treatment methods - Softening of water by ion- exchange processes. Desalination of water – Reverse osmosis

UNIT – II Battery Chemistry & Corrosion

Introduction - Classification of batteries- primary, secondary and reserve batteries with examples. Basic requirements for commercial batteries. Construction, working and applications of: Zn-air and Lithium ion battery, Applications of Li-ion battery to electrical vehicles. Fuel Cells- Differences between battery and a fuel cell, Construction and applications of Methanol Oxygen fuel cell and Solid oxide fuel cell. Solar cells - Introduction and applications of Solar cells.

Corrosion: Causes and effects of corrosion – theories of chemical and electrochemical corrosion – mechanism of electrochemical corrosion, Types of corrosion: Galvanic, water-line and pitting corrosion. Factors affecting rate of corrosion, Corrosion control methods- Cathodic protection – Sacrificial anode and impressed current methods.

UNIT - III: Polymeric materials:

Definition – Classification of polymers with examples – Types of polymerization – addition (free radical addition) and condensation polymerization with examples – Nylon 6:6, Terylene Plastics: Definition and characteristics- thermoplastic and thermosetting plastics, Preparation, Properties and engineering applications of PVC and Bakelite, Teflon, Fiber reinforced plastics (FRP). Rubbers: Natural rubber and its vulcanization.

Elastomers: Characteristics –preparation – properties and applications of Buna-S, Butyl and Thiokol rubber.

Conducting polymers: Characteristics and Classification with examples-mechanism of conduction in trans-poly acetylene and applications of conducting polymers.

Biodegradable polymers: Concept and advantages - Polylactic acid and poly vinyl alcohol and their applications.

UNIT - IV: Energy Sources:

Introduction, Calorific value of fuel – HCV, LCV- Dulong's formula. Classification- solid fuels: coal – analysis of coal – proximate and ultimate analysis and their significance. Liquid fuels – petroleum and its refining, cracking types – moving bed catalytic cracking. Knocking – octane and cetane rating, synthetic petrol - Fischer-Tropsch's process; Gaseous fuels – composition and uses of natural gas, LPG and CNG, Biodiesel – Transesterification, advantages.

UNIT - V: Engineering Materials:

Cement: Portland cement, its composition, setting and hardening. Smart materials and their engineering applications

Shape memory materials- Poly L- Lactic acid. Thermo response materials- Polyacryl amides, Poly vinyl amides

Lubricants: Classification of lubricants with examples-characteristics of a good lubricants - mechanism of lubrication (thick film, thin film and extreme pressure)- properties of lubricants: viscosity, cloud point, pour point, flash point and fire point

Text Books:

1. Engineering Chemistry by P.C. Jain and M. Jain, Dhanpatrai Publishing Company, 2010
2. Engineering Chemistry by Rama Devi, Venkata Ramana Reddy and Rath, Cengage learning, 2016
3. A text book of Engineering Chemistry by M. Thirumala Chary, E. Laxminarayana and K. Shashikala, Pearson Publications, 2021.
4. Textbook of Engineering Chemistry by Jaya Shree Anireddy, Wiley Publications

Reference Books:

1. Engineering Chemistry by Shikha Agarwal, Cambridge University Press, Delhi (2015)
2. Engineering Chemistry by Shashi Chawla, Dhanpatrai and Company (P) Ltd. Delhi (2011)

COMPUTER AIDED ENGINEERING GRAPHICS

(Common for CSE(AIML) & ECE)

Course Objectives:

- To develop the ability of visualization of different objects through technical drawings.
- To acquire computer drafting skill for communication of concepts, ideas in the design of engineering products.

Course Outcomes: At the end of the course, the student will be able to:

- Apply computer aided drafting tools to create 2D and 3D objects.
- Sketch conics and different types of solids.
- Appreciate the need of Sectional views of solids and Development of surfaces of solids.
- Read and interpret engineering drawings.
- Conversion of orthographic projection into isometric view and vice versa manually and by using computer aided drafting.

UNIT-I: Introduction to Engineering Graphics:

Principles of Engineering Graphics and their Significance, Scales – Plain & Diagonal, Conic Sections including the Rectangular Hyperbola – General method only. Cycloid, Epicycloid and Hypocycloid, Introduction to Computer aided drafting – views, commands and conics.

UNIT-II: Orthographic Projections:

Principles of Orthographic Projections – Conventions – Projections of Points and Lines, Projections of Plane regular geometric figures. Auxiliary Planes. Computer aided orthographic projections – points, lines and planes.

UNIT-III Projections of Regular Solids:

Auxiliary Views - Sections or Sectional views of Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views, Computer aided projections of solids – sectional views.

UNIT-IV: Development of Surfaces of Right Regular Solids:

Prism, Cylinder, Pyramid and Cone, Development of surfaces using computer aided drafting.

UNIT-V: Isometric Projections:

Principles of Isometric Projection – Isometric Scale – Isometric Views – Conventions – Isometric Views of Lines, Plane Figures, Simple and Compound Solids – Isometric Projection of objects having non- isometric lines. Isometric Projection of Spherical Parts. Conversion of Isometric Views to Orthographic Views and Vice-versa –Conventions. Conversion of orthographic projection into isometric view using computer aided drafting.

Text Books:

1. Engineering Drawing N.D. Bhatt / Charotar Engineering Drawing and graphics Using AutoCAD Third Edition, T. Jeyapoovan, Vikas: S. Chand and company Ltd.

Reference Books:

1. Engineering Drawing, Basant Agrawal and C M Agrawal, Third Edition McGraw Hill
2. Engineering Graphics and Design, WILEY, Edition 2020
3. Engineering Drawing, M. B. Shah, B.C. Rane / Pearson.
4. Engineering Drawing, N. S. Parthasarathy and Vela Murali, Oxford
5. Computer Aided Engineering Drawing – K Balaveera Reddy et al – CBS Publishers

B.Tech.
I Year - II Semester

L T P C
2 0 0 2

BASIC ELECTRICAL ENGINEERING
(Common for CSE(AIML) & ECE)

Course Objectives:

- To understand DC and Single & Three phase AC circuits.
- To study and understand the different types of DC, AC machines and Transformers.
- To import the knowledge of various electrical installations and the concept of power, powerfactor and its improvement.

Course Outcomes: After learning the contents of this paper the student must be able to

- Understand and analyze basic Electrical circuits.
- Study the working principles of Electrical Machines and Transformers.
- Introduce components of Low Voltage Electrical Installations.

UNIT-I:

D.C. Circuits: Electrical circuit elements (R, L and C), voltage and current sources, KVL&KCL, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.

UNIT-II:

A.C. Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance in series R-L-C circuit. Three-phase balanced circuits, voltage and current relations in star and delta connections.

UNIT-III:

Transformers: Ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

UNIT-IV:

Electrical Machines: Construction and working principle of dc machine, performance characteristics of dc shunt machine. Generation of rotating magnetic field, Construction and working of a three-phase induction motor, Significance of torque-slip characteristics. Single-phase induction motor, Construction and working. Construction and working of synchronous generator.

UNIT-V:

Electrical Installations: Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

Text Books:

1. D.P. Kothari and I. J. Nagrath, “Basic Electrical Engineering”, Tata McGraw Hill, 4th Edition, 2019.
2. MS Naidu and S Kamakshaiah, “Basic Electrical Engineering”, Tata McGraw Hill, 2nd Edition, 2008.

Reference Books:

1. P. Ramana, M. Suryakalavathi, G.T. Chandrasheker, “Basic Electrical Engineering”, S. Chand, 2nd Edition, 2019.
2. D. C. Kulshreshtha, “Basic Electrical Engineering”, McGraw Hill, 2009
3. M. S. Sukhija, T. K. Nagsarkar, “Basic Electrical and Electronics Engineering”, Oxford, 1st Edition, 2012.
4. Abhijit Chakrabarti, Sudipta Debnath, Chandan Kumar Chanda, “Basic Electrical Engineering”, 2nd Edition, McGraw Hill, 2021.
5. L. S. Bobrow, “Fundamentals of Electrical Engineering”, Oxford University Press, 2011.
6. E. Hughes, “Electrical and Electronics Technology”, Pearson, 2010.
7. V. D. Toro, “Electrical Engineering Fundamentals”, Prentice Hall India, 1989

B.Tech.

I Year - II Semester

L T P C
2 0 0 2

ELECTRONIC DEVICES AND CIRCUITS
(Common for CSE, CSE(AI&ML), CSE(DS), IT & ECE)

Course Objectives:

- To introduce components such as diodes, BJTs and FETs.
- To know the applications of devices.
- To know the switching characteristics of devices

Course Outcomes: The student will learn

- Acquire the knowledge of various electronic devices and their use on real life.
- Know the applications of various devices.
- Acquire the knowledge about the role of special purpose devices and their applications.

UNIT - I: Diodes

Diode - Static and Dynamic resistances, Equivalent circuit, Diffusion and Transition Capacitances, V-I Characteristics, Diode as a switch- switching times.

UNIT - II: Diode Applications:

Rectifier - Half Wave Rectifier, Full Wave Rectifier, Bridge Rectifier, Rectifiers with Capacitive and Inductive Filters, Clippers-Clipping at two independent levels, Clamper-Clamping Circuit Theorem, Clamping Operation, Types of Clamps.

UNIT - III: Bipolar Junction Transistor (BJT):

Principle of Operation, Common Emitter, Common Base and Common Collector Configurations, Transistor as a switch, switching times.

UNIT - IV: Junction Field Effect Transistor (FET):

Construction, Principle of Operation, Pinch-Off Voltage, Volt- Ampere Characteristic, Comparison of BJT and FET, FET as Voltage Variable Resistor, MOSFET, MOSTET as a capacitor.

UNIT - V: Special Purpose Devices:

Zener Diode - Characteristics, Zener diode as Voltage Regulator, Principle of Operation - SCR, Tunnel diode, UJT, Varactor Diode, Photo diode, Solar cell, LED, Schottky diode.

Text Books:

1. Jacob Millman - Electronic Devices and Circuits, McGraw Hill Education
2. Robert L. Boylestead, Louis Nashelsky- Electronic Devices and Circuits theory, 11th Edition, 2009, Pearson.

Reference Books:

1. Horowitz -Electronic Devices and Circuits, David A. Bell – 5th Edition, Oxford.
2. Chinmoy Saha, Arindam Halder, Debaati Ganguly - Basic Electronics-Principles and Applications, Cambridge, 2018.

B Tech	L	T	P	C
I Year - II Semester	0	0	2	1

ENGINEERING CHEMISTRY LABORATORY

(Common for CSE(AIML) & ECE)

Course Objectives: The course consists of experiments related to the principles of Chemistry required for engineering student. The student will learn:

- Estimation of hardness of water to check its suitability for drinking purpose.
- Students are able to perform estimations of acids and bases using conductometry,
- Potentiometry and pH metry methods. Students will learn to prepare polymers such as Bakelite and nylon-6 in the laboratory.
- Students will learn skills related to the lubricant properties such as saponification value, surface tension and viscosity of oils.

Course Outcomes: The experiments will make the student gain skills on:

- Determination of parameters like hardness of water and rate of corrosion of mild steel in various conditions.
- Able to perform methods such as conductometry, potentiometry and pH metry in order to find out the concentrations or equivalence points of acids and bases.
- Students are able to prepare polymers like bakelite and nylon-6.
- Estimations saponification value, surface tension and viscosity of lubricant oils.

List of Experiments:

1. **Volumetric Analysis:** Estimation of Hardness of water by EDTA Complexometry method.
2. **Conductometry:** Estimation of the concentration of an acid by Conductometry.
3. **Potentiometry:** Estimation of the amount of Fe^{+2} by Potentiometry.
4. **PH Metry:** Determination of an acid concentration using pH meter.
5. **Preparations:**
 - a. Preparation of Bakelite.
 - b. Preparation of Nylon-6.
6. **Lubricants:**
 - a. Estimation of acid value of given lubricant oil.
 - b. Estimation of Viscosity of lubricant oil using Ostwald's Viscometer.
7. **Corrosion:** Determination of rate of corrosion of mild steel in the presence and absence of inhibitor.
8. **Virtual lab experiments**
 - a. Construction of Fuel cell and it's working.
 - b. Smart materials for Biomedical applications
 - c. Batteries for electrical vehicles.
 - d. Functioning of solar cell and its applications.

Reference Books:

1. Lab manual for Engineering chemistry by B. Ramadevi and P. Aparna, S. Chand Publications, New Delhi (2022)
2. Vogel's text book of practical organic chemistry 5thEdition
3. Inorganic Quantitative analysis by A. I. Vogel, ELBS Publications.
4. College Practical Chemistry by V. K. Ahluwalia, Narosa Publications Ltd. New Delhi (2007).

B.Tech.

I Year - II Semester

L T P C
0 1 2 2

PYTHON PROGRAMMING LABORATORY

(Common for CSE(AI&ML), CSE, CSE(DS), IT)

Course Objectives:

- To install and run the Python interpreter.
- To learn control structures.
- To Understand Lists, Dictionaries in Python
- To Oversee Strings and Files in Python
- To create GUI Environment

Course Outcomes: The student will learn.

- Develop the application specific codes using python.
- Understand Strings, Lists, Tuples and Dictionaries in Python
- Verify programs using modular approach, file I/O, Python standard library.
- Implement Digital Systems using Python.
- Able to create GUI using Python

Week -1:

1. i) Use a web browser to go to the Python website <http://python.org>. This page contains information about Python and links to Python-related pages, and it gives you the ability to search the Python documentation.
ii) Start the Python interpreter and type help () to start the online help utility.
2. Start a Python interpreter and use it as a Calculator.
3. i) Write a program to calculate compound interest when principal, rate and number of periods are given.
ii) Given coordinates (x1, y1), (x2, y2) find the distance between two points
4. Read name, address, email and phone number of a person through keyboard and print the details.

Week - 2:

1. Print the triangle below using for loop.

5
4 4
3 3 3
2 2 2 2
1 1 1 1 1

2. Write a program to check whether the given input is digit or lowercase character or uppercase character or a special character (use 'if-else-if' ladder)
3. Python Program to Print the Fibonacci sequence using while loop

4. Python program to print all prime numbers in each interval (use break)

Week - 3:

1. i) Write a program to convert a list and tuple into arrays.
ii) Write a program to find common values between two arrays.
2. Write a function called GCD that takes parameters a and b and returns their greatest common divisor.
3. Write a function called palindrome that takes a string argument and returns True if it is a palindrome and False otherwise. Remember that you can use the built-in function len to check the length of a string.

Week - 4:

1. Write a function called is_sorted that takes a list as a parameter and returns True if the list is sorted in ascending order and False otherwise.
2. Write a function called has_duplicates that takes a list and returns True if there is any element that appears more than once. It should not modify the original list.
 - i). Write a function called remove_duplicates that takes a list and returns a new list with only the unique elements from the original. Hint: they don't have to be in the same order.
 - ii). The wordlist I provided, words.txt, doesn't contain single letter words. So you might want to add "I", "a", and the empty string.
 - iii). Write a python code to read dictionary values from the user. Construct a function to invert its content. i.e., keys should be values and values should be keys.
- 3.i) Add a comma between the characters. If the given word is 'Apple', it should become 'A,p,p,l,e'
ii) Remove the given word in all the places in a string?
iii) Write a function that takes a sentence as an input parameter and replaces the first letter of every word with the corresponding upper case letter and the rest of the letters in the word by corresponding letters in lower case without using a built-in function?
4. Writes a recursive function that generates all binary strings of n-bit length

Week - 5:

1. i) Write a python program that defines a matrix and prints
ii) Write a python program to perform addition of two square matrices
iii) Write a python program to perform multiplication of two square matrices
2. How do you make a module? Give an example of construction of a module using different geometrical shapes and operations on them as its functions.
3. Use the structure of exception handling all general-purpose exceptions.

Week-6:

1. a. Write a function called draw_rectangle that takes a Canvas and a Rectangle as arguments and draws a representation of the Rectangle on the Canvas.
b. Add an attribute named color to your Rectangle objects and modify draw_rectangle so that it uses the color attribute as the fill color.
c. Write a function called draw_point that takes a Canvas and a Point as arguments and draws a representation of the Point on the Canvas.

- d. Define a new class called Circle with appropriate attributes and instantiate a few Circle objects. Write a function called draw_circle that draws circles on the canvas.
2. Write a Python program to demonstrate the usage of Method Resolution Order (MRO) in multiple levels of Inheritances.
3. Write a python code to read a phone number and email-id from the user and validate it for correctness.

Week- 7:

1. Write a Python code to merge two given file contents into a third file.
2. Write a Python code to open a given file and construct a function to check for given words present in it and display on found.
3. Write a Python code to Read text from a text file, find the word with most number of occurrences
4. Write a function that reads a file file1 and displays the number of words, number of vowels, blank spaces, lower case letters and uppercase letters.

Week - 8:

1. Import numpy, Plotpy and Scipy and explore their functionalities.
 - a) Install NumPy package with pip and explore it.
2. Write a program to implement Digital Logic Gates – AND, OR, NOT, EX-OR
3. Write a program to implement Half Adder, Full Adder, and Parallel Adder
4. Write a GUI program to create a window wizard having two text labels, two text fields and two buttons as Submit and Reset.

TEXT BOOKS:

1. **Supercharged Python:** Take your code to the next level, Overland
2. **Learning Python, Mark Lutz, O'reilly**

REFERENCE BOOKS:

1. Python for Data Science, Dr. Mohd. Abdul Hameed, Wiley Publications - 1st Ed. 2021
2. Python Programming: A Modern Approach, Vamsi Kurama, Pearson
3. Python Programming A Modular Approach with Graphics, Database, Mobile, and Web Applications, Sheetal Taneja, Naveen Kumar, Pearson
4. Programming with Python, A User's Book, Michael Dawson, Cengage Learning, India Edition
5. Think Python, Allen Downey, Green Tea Press
6. Core Python Programming, W. Chun, Pearson
7. Introduction to Python, Kenneth A. Lambert, Cengage

B.Tech

I Year - II Semester

L T P C
0 0 2 1

BASIC ELECTRICAL ENGINEERING LABORATORY

(Common for CSE(AIML) & ECE)

Course Objectives:

- To measure the electrical parameters for different types of DC and AC circuits using conventional and theorems approach.
- To study the transient response of various R, L and C circuits using different excitations.
- To determine the performance of different types of DC, AC machines and Transformers.

Course Outcomes: After learning the contents of this paper, the student must be able to

- Verify the basic Electrical circuits through different experiments.
- Evaluate the performance calculations of Electrical Machines and Transformers through various testing methods.
- Analyze the transient responses of R, L and C circuits for different input conditions.

List of experiments/demonstrations:

PART- A (compulsory)

1. Verification of KVL and KCL
2. Verification of Thevenin's and Norton's theorem
3. Transient Response of Series RL and RC circuits for DC excitation
4. Resonance in series RLC circuit
5. Calculations and Verification of Impedance and Current of RL, RC and RLC Series circuits
6. Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of a Single-Phase Transformer
7. Performance Characteristics of a DC Shunt Motor
8. Torque-Speed Characteristics of a Three-phase Induction Motor.

PART-B (any two experiments from the given list)

1. Verification of Superposition theorem.
2. Three Phase Transformer: Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta, Delta-star, Star-Star)
3. Load Test on Single Phase Transformer (Calculate Efficiency and Regulation)
4. Measurement of Active and Reactive Power in a balanced Three-phase circuit
5. No-Load Characteristics of a Three-phase Alternator

Text Books:

1. D.P. Kothari and I. J. Nagrath, “Basic Electrical Engineering”, Tata McGraw Hill, 4th Edition, 2019.
2. MS Naidu and S Kamakshaiah, “Basic Electrical Engineering”, Tata McGraw Hill, 2nd Edition, 2008.

Reference Books:

1. P. Ramana, M. Suryakalavathi, G.T. Chandrasheker, “Basic Electrical Engineering”, S. Chand, 2nd Edition, 2019.
2. D. C. Kulshreshtha, “Basic Electrical Engineering”, McGraw Hill, 2009
3. M. S. Sukhija, T. K. Nagsarkar, “Basic Electrical and Electronics Engineering”, Oxford, 1st Edition, 2012.
4. Abhijit Chakrabarti, Sudipta Debnath, Chandan Kumar Chanda, “Basic Electrical Engineering”, 2nd Edition, McGraw Hill, 2021.
5. L. S. Bobrow, “Fundamentals of Electrical Engineering”, Oxford University Press, 2011.
6. E. Hughes, “Electrical and Electronics Technology”, Pearson, 2010.
7. V. D. Toro, “Electrical Engineering Fundamentals”, Prentice Hall India, 1989

B.Tech.

L T P C
0 0 2 1

I Year - II Semester

IT WORKSHOP

(Common for IT, CSE, CSE(AI&ML), CSE(DS))

Course Objectives: The IT Workshop for engineers is a training lab course spread over 60 hours. The modules include training on PC Hardware, Internet & World Wide Web and Productivity tools including Word, Excel, PowerPoint and Publisher.

Course Outcomes:

- Perform Hardware troubleshooting
- Understand Hardware components and inter dependencies
- Safeguard computer systems from viruses/worms
- Document/ Presentation preparation
- Perform calculations using spreadsheets.

PC Hardware

Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

Task 2: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.

Task 3: Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

Task 4: Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot with both Windows and Linux. Lab instructors should verify the installation and follow it up with a Viva.

Internet & World Wide Web

Task1: Orientation & Connectivity Boot Camp: Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

Task 2: Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.

Task 3: Search Engines & Netiquette: Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by type the student.

Task 4: Cyber Hygiene: Students would be exposed to the various threats on the

internet and would be asked to configure their computer to be safe on the internet. They need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms.

LaTeX and WORD

Task 1 – Word Orientation: The mentor needs to give an overview of LaTeX and Microsoft (MS) office or equivalent (FOSS) tool word: Importance of LaTeX and MS office or equivalent (FOSS) tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using LaTeX and word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word.

Task 2: Using LaTeX and Word to create a project certificate. Features to be covered:- Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word.

Task 3: Creating project abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.

Task 4: Creating a Newsletter: Features to be covered: Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

Excel

Excel Orientation: The mentor needs to tell the importance of MS office or equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources.

Task 1: Creating a Scheduler - Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text

Task 2 : Calculating GPA - .Features to be covered:- Cell Referencing, Formulae in excel – average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP

Task 3: Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting

Powerpoint

Task 1: Students will be working on basic power point utilities and tools which help them create basic powerpoint presentations. PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in PowerPoint.

Task 2: Interactive presentations - Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts.

Task 3: Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), and Inserting – Background, textures, Design Templates, Hidden slides.

Reference Books:

1. Comdex Information Technology course tool kit Vikas Gupta, WILEY Dreamtech
2. The Complete Computer upgrade and repair book, 3rd edition Cheryl A Schmidt, WILEY Dreamtech
3. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
4. PC Hardware - A Handbook – Kate J. Chase PHI (Microsoft)
5. LaTeX Companion – Leslie Lamport, PHI/Pearson.
6. IT Essentials PC Hardware and Software Companion Guide Third Edition by David Anfinson and Ken Quamme. – CISCO Press, Pearson Education.
7. IT Essentials PC Hardware and Software Labs and Study Guide Third Edition by Patrick Regan – CISCO Press, Pearson Education.