

VIGNAN'S INSTITUTE OF MANAGEMENT AND TECHNOLOGY FOR WOMEN

(An Autonomous Institution)

[Sponsored by Lavu Educational Society, Affiliated to JNTUH & Approved by AICTE, New Delhi]
Kondapur (V), Ghatkesar (M), Medchal - Malkajgiri (D) - 501 301. Phone: 96529 10002/3

COMPUTER SCIENCE & ENGINEERING (DATA SCIENCE)

COURSE STRUCTURE-VR24

II B.Tech.-I Semester

S. No.	Course Code	Course	L	T	P	Credits
1	EC301ES	Digital Electronics	3	0	0	3
2	DS302PC	Data Structures	3	0	0	3
3	MA303BS	Computer Oriented Statistical Methods	3	1	0	4
4	DS304PC	Computer Organization and Architecture	3	0	0	3
5	DS305PC	Object Oriented Programming through Java	3	0	0	3
6	DS306PC	Data Structures Lab	0	0	3	1.5
7	DS307PC	Object Oriented Programming through Java Lab	0	0	3	1.5
8	DS308PC	Data visualization-R Programming/Power BI	0	0	2	1
9	*MC309	Gender Sensitization Lab	0	0	2	0
Total			15	1	10	20

II B.Tech.-II Semester

S. No.	Course Code	Course	L	T	P	Credits
1	DS401PC	Discrete Mathematics	3	0	0	3
2	SM402MS	Business Economics & Financial Analysis	3	0	0	3
3	DS403PC	Operating Systems	3	0	0	3
4	DS404PC	Database Management Systems	3	0	0	3
5	DS405PC	Software Engineering	3	0	0	3
6	DS406PC	Operating Systems Lab	0	0	2	1
7	DS407PC	Database Management Systems Lab	0	0	2	1
8	DS408PC	Real-time Research Project/ Societal Related Project	0	0	4	2
9	DS409PC	Node JS /React JS / Django	0	0	2	1
10	*MC410	Constitution of India	3	0	0	0
Total			18	0	10	20

Note: L-Theory

T-Tutorial P-Practical C-Credits

B. Tech. CSE(DS) **L T P C**
II Year - II Semester **3 0 0 3**

DISCRETE MATHEMATICS

Course Objectives:

- Introduces elementary discrete mathematics for computer science and engineering.
- Topics include formal logic notation, methods of proof, induction, sets, relations, algebraic structures, elementary graph theory, permutations and combinations, counting principles; recurrence relations and generating functions.

Course Outcomes: The student will learn

- Ability to understand and construct precise mathematical proofs and construct precise mathematical proofs
- Ability to analyze and solve counting problems on finite and discrete structures
- Ability to describe and manipulate sequences
- Describe and manipulate sequences
- Ability to apply graph theory in solving computing problems

UNIT - I Mathematical logic:

Introduction, Statements and Notation, Connectives, Normal Forms, Theory of Inference for the Statement Calculus, The Predicate Calculus, Inference Theory of the Predicate Calculus.

Unit – II: Set theory

Introduction, Basic Concepts of Set Theory, Representation of Discrete Structures, Relations and Ordering, Functions.

Unit – III: Algebraic Structures

Introduction, Algebraic Systems, Semi groups and Monoids, Lattices as Partially Ordered Sets, Boolean Algebra.

Unit – IV: Elementary Combinatorics:

Basics of Counting, Combinations and Permutations, Enumeration of Combinations and Permutations, Enumerating Combinations and Permutations with Repetitions, Enumerating Permutation with Constrained Repetitions, Binomial Coefficient, The Binomial and Multinomial Theorems, The Principle of Exclusion.

Unit – V: Graph Theory:

Basic Concepts, Isomorphism and Subgraphs, Trees and their Properties, Spanning Trees, Directed Trees, Binary Trees, Planar Graphs, Euler's Formula, Multi-graphs and Euler Circuits, Hamiltonian Graphs, Chromatic Numbers, The Four-Color Problem.

Text Books:

1. Discrete Mathematical Structures with Applications to Computer Science: J.P. Tremblay, R. Manohar, McGraw-Hill, 1st ed.
2. Discrete Mathematics for Computer Scientists & Mathematicians: Joe L. Mott, Abraham Kandel, Theodore P. Baker, Prentis Hall of India, 2nd ed.

Reference Books:

1. Discrete and Combinatorial Mathematics - an applied introduction: Ralph.P. Grimaldi, Pearson education, 5th edition.
2. Discrete Mathematical Structures: Thomas Koshy, Tata McGraw Hill publishing co.

B.Tech.

II Year - II Semester

L T P C
3 0 0 3

Business Economics and Financial Analysis
(Common for CSE, IT& CSE(DS))

Course Objectives:

- To learn the basic business types, impact of the economy on Business and Firms specifically.
- To understand the fundamental concepts of demand and supply in economics.
- To understand the relationship among production, cost, market structures, and pricing strategies for business decision-making.
- To understand the fundamental accounting principles.
- To analyze the Business from the Financial Perspective.

Course Outcomes: The student will learn

- Various Forms of Business and the impact of economic variables on the Business.
- Problem-solving skills by applying demand and supply theories to real-world situations.
- How production, costs and market structures influence pricing decisions and business profitability.
- To prepare, analyze, and interpret financial statements.
- To analyse financial position by analysing the Financial Statements of a Company.

Unit-I: Introduction to Business and Economics

Business: Structure of Business Firm, Theory of Firm, Types of Business Entities, Limited Liability Companies, Sources of Capital for a Company, Non-Conventional Sources of Finance.

Economics: Significance of Economics, Micro and Macro Economic Concepts, Concepts and Importance of National Income, Inflation, Money Supply and Inflation, Business Cycle, Features and Phases of Business Cycle. Nature and Scope of Business Economics, Role of Business Economist, Multidisciplinary nature of Business Economics.

UNIT-II: Demand and Supply Analysis

Elasticity of Demand: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting.

Supply Analysis: Determinants of Supply, Supply Function and Law of Supply.

UNIT-III: Production, Cost, Market Structures & Pricing

Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.

Cost analysis: Types of Costs, Short run and Long run Cost Functions.

Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, Monopolistic Competition. Pricing: Types of Pricing, Product Life Cycle based Pricing, Break Even Analysis, Cost Volume Profit Analysis.

UNIT - IV: Financial Accounting

Accounting concepts and Conventions, Accounting Equation, Double-Entry system of Accounting, Rules for maintaining Books of Accounts, Journal, Posting to Ledger, Preparation of Trial Balance, Elements of Financial Statements, Preparation of Final Accounts (Simple Problems).

UNIT - V: Financial Ratios Analysis

Concept of Ratio Analysis, Importance and Types of Ratios, Liquidity Ratios, Turnover Ratios, Profitability Ratios, Proprietary Ratios, Solvency, Leverage Ratios— Analysis and Interpretation (simple problems).

Text Books:

1. D. D. Chaturvedi, S. L. Gupta, Business Economics - Theory and Applications, International Book House Pvt. Ltd. 2013.
2. Dhanesh K Khatri, Financial Accounting, Tata Mc –Graw Hill, 2011.
3. Geethika Ghosh, Piyali Gosh, Purba Roy Choudhury, Managerial Economics, 2e, Tata Mc Graw Hill Education Pvt. Ltd. 2012.

Reference Books:

1. Paresh Shah, Financial Accounting for Management 2e, Oxford Press, 2015.
2. S. N. Maheshwari, Sunil K Maheshwari, Sharad K Maheshwari, Financial Accounting, 5e, Vikas Publications, 2013.

OPERATING SYSTEMS

Course Objectives:

- Introduce operating system concepts (i.e., processes, threads, scheduling, synchronization, deadlocks, memory management, file and I/O subsystems and protection)
- Introduce the issues to be considered in the design and development of operating system
- Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes: The student will learn

- Will be able to control access to a computer and the files that may be shared
- Demonstrate the knowledge of the components of computers and their respective roles in computing.
- Ability to recognize and resolve user problems with standard operating environments.
- Gain practical knowledge of how programming languages, operating systems, and architectures interact and how to use each effectively.
- Will be able to control access to File System Interface and Operations

UNIT - I: Operating System - Introduction

Structures - Simple Batch, Multiprogrammed, Time-shared, Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components, Operating System services, System Calls

Process: Process concepts and scheduling, Operations on processes, Cooperating Processes, Threads

UNIT - II: CPU Scheduling:

Scheduling Criteria, Scheduling Algorithms, Multiple -Processor Scheduling. System call interface for process management-fork, exit, wait, waitpid, exec

Deadlocks: System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock

UNIT - III: Process Management and Synchronization

The Critical Section Problem, Synchronization Hardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors

Interprocess Communication Mechanisms: IPC between processes on a single computer system, IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory.

UNIT - IV: Memory Management and Virtual Memory:

Logical versus Physical Address Space, Swapping, Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging, Page Replacement, Page Replacement Algorithms.

UNIT - V: File System Interface and Operations:

Access methods, Directory Structure, Protection, File System Structure, Allocation methods, Free-space Management. Usage of open, create, read, write, close, lseek, stat, ioctl system calls.

Text Books:

1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley.
2. Advanced programming in the **UNIX** environment, W.R. Stevens, Pearson education

Reference Books:

1. Operating Systems- Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI
2. Operating System A Design Approach- Crowley, TMH.
3. Modern Operating Systems, Andrew S. Tanenbaum 2nd edition, Pearson/PHI
4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education
5. UNIX Internals -The New Frontiers, U. Vahalia, Pearson Education

B.Tech. CSE(DS)

L T P C

II Year – II Semester

3 0 0 3

DATABASE MANAGEMENT SYSTEMS

Course Objectives:

- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Course Outcomes:

- Gain knowledge of fundamentals of DBMS, database design and normal forms
- Master the basics of SQL for retrieval and management of data.
- Be acquainted with the basics of transaction processing and concurrency control.
- Familiarity with database storage structures and access techniques
- Analyze and implement transaction processing concurrency control and database recovery protocols in database

UNIT - I

Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS **Introduction to Database Design:** Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design with the ER Model

UNIT - II

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical database design, introduction to views, destroying/altering tables and views. Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III

SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active databases. Schema Refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, First, Second, Third normal forms, BCNF, lossless join decomposition, multivalued dependencies, Fourth normal form, Fifth normal form.

UNIT - IV

Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, testing for serializability, Lock Based Protocols, Timestamp Based Protocols, Validation-Based Protocols, Multiple Granularity, Recovery and Atomicity, Log-Based Recovery, Recovery with Concurrent Transactions.

UNIT - V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree based Indexing, Comparison of File Organizations, Indexes- Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM), B+ Trees: A Dynamic Index Structure.

TEXT BOOKS:

1. Database System Concepts, Silberschatz, Korth, McGraw hill, V edition.3rd Edition
2. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill.

REFERENCE BOOKS:

1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
3. Introduction to Database Systems, C. J. Date, Pearson Education
4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

SOFTWARE ENGINEERING

Course Objectives:

- The aim of the course is to provide an understanding of the working knowledge of the techniques for estimation, design, testing and quality management of large software development projects.
- Topics include process models, software requirements, software design, software testing, software process/product metrics, risk management, quality management and UML diagrams

Course Outcomes:

- Ability to translate end-user requirements into system and software requirements, using e.g., UML, and structure the requirements in a Software Requirements Document (SRD)
- Identify and apply appropriate software architectures and patterns to carry out high level design of a system and be able to critically compare alternative choices.
- Will have experience and/or awareness of testing problems and will be able to develop a simple testing report.
- Ability to recognize and understand the adopt the design models such as waterfall model, Spiral model.
- Will able to understand the concepts such as quality management with Industrial Standards.

UNIT - I

Introduction to Software Engineering: The evolving role of software, changing nature of software, software myths. A Generic view of process: Software engineering- a layered technology, a process framework, the capability maturity model integration (CMMI). Process models: The waterfall model, Spiral model and Agile methodology

UNIT - II

Software Requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document. Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management.

UNIT - III

Design Engineering: Design process and design quality, design concepts, the design model. Creating an architectural design: software architecture, data design, architectural styles and patterns, architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component diagrams.

UNIT - IV

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging. **Metrics for Process and Products:** Software measurement, metrics for software quality.

UNIT - V Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM. **Quality Management:** Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, software reliability, the ISO 9000 quality standards.

TEXT BOOKS:

1. Software Engineering, A practitioner's Approach- Roger S. Pressman, 6th edition, McGraw Hill International Edition.
2. Software Engineering- Sommerville, 7th edition, Pearson Education.

REFERENCE BOOKS:

1. The unified modeling language user guide Grady Booch, James Rumbaugh, Ivar Jacobson, Pearson Education.
2. Software Engineering, an Engineering approach- James F. Peters, Witold Pedrycz, John Wiley.
3. Software Engineering principles and practice- Waman S Jawadekar, The McGraw-Hill Companies.
4. Fundamentals of object-oriented design using UML Meiler page-Jones: Pearson Education.

B.Tech.

II Year - II Semester

L T P C
0 0 2 1

OPERATING SYSTEMS LAB

Course Objectives:

- To provide an understanding of the design aspects of operating system concepts through simulation
- Introduce basic Unix commands, system call interface for process management Interprocess Communication and I/O in Unix

Course Outcomes: The student will learn

- Simulate and implement operating system concepts such as scheduling, deadlock management.
- Simulate the memory management techniques.
- Able to implement C programs using Unix system calls
- Able to Implement the Producer – Consumer problem using semaphores using UNIX/LINUX system calls
- Ability to Simulate and Implement OS Concept for Page Replacement Policies Such as FCFS, LRU & Optimal

List of Experiments:

1. Write C programs to simulate the following CPU Scheduling algorithms
a) FCFS b) SJF c) Round Robin d) Priority
2. Write programs using the I/O system calls of UNIX/LINUX operating system (open, read, write, close, fcntl, seek, stat, opendir, readdir)
3. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and Prevention.
4. Write a C program to implement the Producer – Consumer problem using semaphores using UNIX/LINUX system calls.
5. Write C programs to illustrate the following IPC mechanisms
a) Pipes b) FIFOs c) Message Queues d) Shared Memory
6. Write C programs to simulate the following memory management techniques
a) Paging b) Segmentation
7. Write C programs to simulate Page replacement policies
a) FCFS b) LRU c) Optimal

Text Books:

1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley
2. Advanced programming in the Unix environment, W.R. Stevens, Pearson education.

Reference Books:

1. Operating Systems – Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI
2. Operating System - A Design Approach-Crowley, TMH.
3. Modern Operating Systems, Andrew S Tanenbaum, 2nd edition, Pearson/PHI
4. UNIX Programming Environment, Kernighan and Pike, PHI/Pearson Education
5. UNIX Internals: The New Frontiers, U. Vahalia, Pearson Education

B.Tech. CSE(DS)

L T P C

II Year - II Semester

0 0 2 1

DATABASE MANAGEMENT SYSTEMS LAB

Course Objectives:

- Introduce ER data model, database design and normalization
- Learn SQL basics for data definition and data manipulation

Course Outcomes: The student will learn

- Design database schema for a given application and apply normalization.
- Acquire skills in using SQL commands for data definition and data manipulation.
- Develop solutions for database applications using procedures, cursors and triggers.
- Develop query using various operators in different clauses
- Implement data integrity constraints.

List of Experiments:

1. Concept design with E-R Model
2. Relational Model
3. Normalization
4. Practicing DDL commands
5. Practicing DML commands
6. A. Querying (using ANY, ALL, UNION, INTERSECT, JOIN, Constraints etc.)
B. Nested, Correlated subqueries
7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.
8. Triggers (Creation of insert trigger, delete trigger, update trigger)
9. Procedures
10. Usage of Cursors

Text Books:

1. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill, 3 rd Edition
2. Database System Concepts, Silberschatz, Korth, McGraw Hill, V edition.

Reference Books:

1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
3. Introduction to Database Systems, C.J. Date, Pearson Education
4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

B.Tech. CSE (DS)

L T P C

II Year - II Semester

0 0 2 1

NODE JS/ REACT JS/ DJANGO

Course Objectives:

- To implement the static web pages using HTML and do client-side validation using JavaScript.
- To design and work with databases using Java
- To develop an end-to-end application using java full stack.
- To introduce Node JS implementation for server-side programming.
- To experiment with single page application development using React.

Course Outcomes: The student will learn

- Build a custom website with HTML, CSS, and Bootstrap and little JavaScript.
- Demonstrate Advanced features of JavaScript and learn about JDBC
- Develop Server – side implementation using Java technologies like
- Develop the server – side implementation using Node JS.
- Design a Single Page Application using React.

List of Experiments:

1. Build a responsive web application for shopping cart with registration, login, catalog and cart pages using CSS3 features, flex and grid.
2. Make the above web application responsive web application using Bootstrap framework.
3. Use JavaScript for doing client – side validation of the pages implemented in experiment 1 and experiment 2.
4. Explore the features of ES6 like arrow functions, callbacks, promises, async/await. Implement an application for reading the weather information from openweathermap.org and display the information in the form of a graph on the web page.
5. Develop a java stand alone application that connects with the database (Oracle / mySql) and perform the CRUD operation on the database tables.
6. Create an xml for the bookstore. Validate the same using both DTD and XSD.
7. Design a controller with servlet that provides the interaction with application developed in experiment 1 and the database created in experiment 5.
8. Maintaining the transactional history of any user is very important. Explore the various session tracking mechanism (Cookies, HTTP Session)
9. Create a custom server using http module and explore the other modules of Node JS like OS, path, event.
10. Develop an express web application that can interact with REST API to perform CRUD operations on student data. (Use Postman)
11. For the above application create authorized end points using JWT (JSON Web Token).
12. Create a react application for the student management system having registration, login, contact, about pages and implement routing to navigate through these pages.

- 13.** Create a service in react that fetches the weather information from openweathermap.org and the display the current and historical weather information using graphical representation using chart.js
- 14.** Create a TODO application in react with necessary components and deploy it into GitHub.

Reference Books:

- 1.** Jon Duckett, Beginning HTML, XHTML, CSS, and JavaScript, Wrox Publications, 2010
- 2.** Bryan Basham, Kathy Sierra and Bert Bates, Head First Servlets and JSP, O'Reilly Media, 2nd Edition, 2008.
- 3.** Vasan Subramanian, Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node, 2nd Edition, A Press.

B.Tech.

L T P C

II Year - II Semester

3 0 0 0

CONSTITUTION OF INDIA
(COMMON TO CSE,CS(DS),CSE(AIML),IT & ECE)

Course Objectives: Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution
- Discuss the passage of the Hindu Code Bill of 1956.

UNIT-I:

History of Making of the Indian Constitution- History of Drafting Committee.

UNIT-II:

Philosophy of the Indian Constitution- Preamble Salient Features

UNIT-III:

Contours of Constitutional Rights & Duties - Fundamental Rights

- Right to Equality
- Right to Freedom
- Right against Exploitation
- Right to Freedom of Religion
- Cultural and Educational Right
- Right to Constitutional Remedies
- Directive Principles of State Policy
- Fundamental Duties.

UNIT-IV:

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions

UNIT-V:

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

UNIT-VI:

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

Suggested Reading:

1. The Constitution of India, 1950 (Bare Act), Government Publication.
2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.